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Introduction
1 Introduction
Unexpected coincidences between different fields which have been studied independently often
occur in the history of science, and they promote the development and understanding of both
fields. One notable example is moonshine phenomena.

In finite group theory in mathematics, the classification of finite simple groups was a long-
standing problem. Nowadays, it is already settled, and finite simple groups are classified into
three infinite series, and 26 sporadic groups. In 1978, when the existence of the largest sporadic
group called the monster group M was still a conjecture, McKay noticed that its smallest nontrivial
irreducible representation dimension 196883 appears in the coefficient of the modular j-function

j(τ) = q−1 + 774 + 196884q + · · · (q = e2π
√
−1τ ), (1.1)

as 196884 = 196883 + 1 [McK01]. Furthermore, Thompson observed that the first few coeffi-
cients of the modular j-function can also be written as simple sums of irreducible representation
dimensions of the monster group M [Tho79b]. It came as a surprise to mathematicians at that
time, because the modular j-function is a concept important in arithmetic geometry of elliptic
curves, a field studied independently of finite group theory. Conway and Norton deepened the
relation between the monster group M and the modular j-function, and proposed a conjecture
which they call the monstrous moonshine [CN79]. Here, the English word “moonshine” means
“insubstantial or unreal” [Gan06a].

The appearance of the irreducible representations of the monster group in the modular j-
function was theoretically explained by Frenkel, Lepowsky, and Meurman. They constructed
an algebraic object called a vertex operator algebra (VOA), whose automorphism group is the
monster group, and whose graded character is the modular j-function (up to the constant term)
[FLM88]. However, this moonshine phenomenon was not confined to mathematics. Surprisingly,
the concept of vertex operator algebras provided a mathematical formulation of two-dimensional
conformal field theories in physics. Conformal field theory (CFT) is an important framework in
physics, which describes the string theory in high-energy physics and the critical phenomena in
condensed matter physics.

This triggered off a lot of interaction between mathematics and physics. For example, many
other moonshine phenomena were observed between the sporadic groups and modular functions
or weak Jacobi forms, and one of the prominent examples, the K3 Mathieu moonshine, was found
by physicists Eguchi, Ooguri, and Tachikawa [EH10]. It has been studied by both mathematicians
and physicists to this day, but its mysterious nature has not yet been fully understood.

Moreover, conformal field theories with sporadic group symmetries have been extending be-
yond moonshine phenomena. For example, they are studied in [Wit07, GGK+08] in relation to
three-dimensional gravity. In addition, a specific VOA called the Conway moonshine module is
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expected to be useful in providing supporting evidence for the Stolz–Teichner conjecture, which
also proposes a new correspondence between mathematics and physics [ST11].
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Part I

Review of Basic Concepts
This Part I is a review of basic concepts related to moonshine phenomena. A moonshine phe-
nomenon is, simply put, an observed relationship between a finite group, in particular a simple
one, and a modular function. So we review some general facts about finite simple groups in Sec-
tion 2, and modular functions in Section 3. The most classical example of moonshine phenomena,
the monstrous moonshine, was theoretically explained by an underlying object called a vertex
operator algebra (VOA). VOAs are also expected to be key ingredients in understanding other
moonshine phenomena, and provide connections with two-dimensional conformal field theories
(CFT) in physics. We will review the axiomatic definition of a VOA in Section 4 to get the idea
of how VOAs mathematically formulate CFTs in physics, but the definition itself is somewhat
technical. In many cases for physicists, it suffices to consider the examples of VOAs reviewed in
the next Part II, whose constructions would be more familiar to physicists working with CFTs.

2 Finite Simple Groups
In this Section 2, we review basic facts about finite simple groups, mainly focusing on important
examples of sporadic finite simple groups. After mentioning the classification of finite simple
groups in Section 2.1, we will describe the Mathieu groups, the Conway groups, and the monster
group in Sections 2.2, 2.3, and 2.4, respectively. Along the way, we also review fundamental
concepts such as codes and lattices, partly in order to fix definitions and notations; we mainly
follow the definitions in [CS99].

Before proceeding, let us clarify the convention of permutation groups and its actions, and
some notations regarding groups and lattice vectors here.

Convention of permutation groups and its actions
The symmetric group Sn consists of permutations σ : Ωn → Ωn where Ωn = {1, . . . , n}, and

there are two conventions for the definition of the multiplication:

(1, 2) · (1, 3) = (1, 3, 2); 1 7→ 3, 3 7→ 2, 2 7→ 1, (2.1)

(1, 2) ·̃ (1, 3) = (1, 2, 3); 1 7→ 2, 2 7→ 3, 3 7→ 1. (2.2)

They are related as τ · σ = σ ·̃ τ .
In these notes, we will adopt the multiplication · (2.1) and the left action of σ ∈ Sn on a vector

k = (k1, . . . , kn) ∈ Rn as

σ(k) = (kσ−1(1), . . . , kσ−1(n)). (2.3)

This can also be written as (σ(k))σ(i) = ki.

6



In GAP [GAP22] and the webpage of ATLAS of Finite Group Representations [WWT+], on
the other hand, they adopt the multiplication ·̃ (2.2). So when we cite equations from them, we
will convert them into representations in terms of the multiplication · (2.1) in these notes.

Notations of groups
For groups G and N , following ATLAS of Finite Groups [CCN+85], we write N.G for any

extension of G by N .

1→ N → N.G→ G→ 1. (2.4)

If it is a split extension, or equivalently a semidirect product, then we write N : G or N ⋊ G.
Furthermore, if it is a direct product, then we write N × G. We sometimes use the notation N ˙G

for a non-split extension. For readers not familiar with these topics, Appendix A contains an
elementary introduction to group extensions.

For a group G, we let Hn(G;A) denote the n-th group cohomology1 of G with coefficients in
A. Here, A is a G-module, although in most cases in these notes, the G-action on A is trivial.

R× denotes the multiplicative group of a ring R.
K[G] denotes the group algebra of G over K.
The cyclic group Zn is sometimes denoted by just n.
The general linear group GL(n,K) is the group of all the invertible n × n matrices over the

field K. The special linear group SL(n,K) is the subgroup of GL(n,K) of all the matrices with
det = 1. The projective general linear group PGL(n,K) is the quotient group of GL(n,K) by
its center K× · 1, which consists of the non-zero scalar matrices. The projective special linear
group PSL(n,K) is the quotient group of SL(n,K) by its center, which consists of the non-zero
scalar matrices with det = 1. In some literature, PGL(n,Zq) is also denoted by PGL(n, q), and
PSL(n,Zq) is by PSL(n, q) or Ln(q).

1G or simply 1 denotes the identity element of G. I denotes the identity matrix. idX denotes
the identity map X → X .

Notations of lattice vectors
For a lattice vector k ∈ L ⊂ Rn of a lattice L, the components of k with respect to the standard

basis of Rn are denoted by subscript as k = (k1, . . . , kn), and the components of k with respect
to another basis e1, . . . , en of Rn (for example a Z-basis of L, but not limited to such a case) are
denoted by superscript as k =

∑
i k

iei.
We let e1, . . . , en denote an orthonormal basis of Rn where the lattice L is embedded, with

respect to the symmetric bilinear form of L (extended by R-linearity).
When the basis is obvious from the context, 1⃗ denotes (1, . . . , 1).

1 There is another concept, the cohomology Hn
top(X;A) of a topological space X . In this notation, the group

cohomology Hn(G;A) in the main text is the cohomology Hn
top(BG;A) of the classifying space BG of G.
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2.1 Classification of Finite Simple Groups

A group G is said to be simple if its normal subgroups are the trivial ones {1} and G only. A
composition series of a group G is a finite series {1} = H0 ⊂ H1 ⊂ · · · ⊂ Hn = G, where
Hi−1 is a proper normal subgroup of Hi, and Hi/Hi−1 is simple, for all i = 1, . . . , n. The groups
Hi/Hi−1 are called the composition factors, and n is called the length of the composition series.
If a group has a composition series, it is unique in the following sense.

Theorem 2.1 (the Jordan–Hölder theorem). If a group has a composition series, then any two
composition series of it have the same length, and the composition factors of them are the same
up to permutation and isomorphism.

It is known that any finite group has a composition series. In this sense, finite simple groups
are fundamental building blocks of finite groups.

The classification of finite simple groups was achieved through the tremendous efforts of many
mathematicians.

Theorem 2.2 (classification of finite simple groups). Every finite simple group is isomorphic to
one of the following groups:

• cyclic groups Zp of prime order,

• alternating groups An of degree n ≥ 5,

• finite simple groups of Lie type,

• 26 sporadic groups, listed in Table 2.1.

Among the 26 sporadic groups, the largest one is the monster group M, and 20 sporadic
groups (including M) are involved in M as subgroups or quotients of subgroups. They are called
the happy family, and the other 6 sporadic groups are called pariahs in [Gri82]. The happy family
is further classified into three generations [Gri82]: the first generation is involved in the Mathieu
group M24, the second generation the Conway group Co1, and the third generation the monster
group M.
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Historically, the sporadic groups first constructed were the Mathieu groups M11,M12 in 1861
[Mat61], and M22,M23,M24 in 1873 [Mat73]. The problem of classifying all the finite simple
groups was questioned in an article [Hö92] by Hölder in 1892. Chevalley and others constructed
simple groups called the groups of Lie type around 1955 [Che55], but the advent of a new sporadic
group had to await the discovery of the Janko group J1, announced in a one-page paper [Jan65]
in 1965, and further clarified in [Jan66]. This was the kick-off of the successive discoveries
of all the sporadic groups, which coincidentally ended again with the Janko group J4 in 1976
[Jan76]. Then the finite group theory was oriented toward the completion of the classification
theorem. It was declared that the proof was completed in 1981 [Gor82], but it was established
as an accumulation of numerous results scattered throughout the literature, so Gorenstein, Lyons,
and Solomon launched a project (the GLS project) to simplify the proof and to present it as a
streamlined series of books. However, a serious gap was found in the classification of groups
called quasithin groups. It was in 2004 that the gap was finally closed by Aschbacher and Smith
in their two-volume books [AS04b, AS04a], as many as 1221 pages in total. Nowadays, the
classification of finite simple groups is regarded as an established theorem. The books of the GLS
project have reached volume 10 [CGLS23] in 2023, and the project is still ongoing.

As for the history of classification of finite simple groups, see [Asc94, §15], [Sol01, Gur18,
Sol18a], [Asc04], and in particular for the GLS project, see [Sol18b]. References on sporadic
groups include [Asc94], [Gri98], and [CS99]. ATLAS of Finite Groups [CCN+85] is a standard
database of finite simple groups, and there is also the webpage ATLAS of Finite Group Represen-
tations [WWT+]. Regarding the literature on sporadic groups written in Japanese, the unpublished
lecture notes3 [Kon96] by Kondo and several expository articles were the only available references
for a long time, although there was a book [Har99] by Harada focusing on the monster group and
the monstrous moonshine. Fortunately, the situation has drastically improved with the publication
of Yoshiara’s book [Yos24] in 2024.

In the following sections, we will review particularly important sporadic groups, the Mathieu
groups, the Conway groups, and the monster group. They can be described as the automorphism
groups (or their subgroups or quotients) of some algebraic objects, the binary Golay code, the
Leech lattice, and the Griess algebra or the monster VOA, respectively.

2.2 The Mathieu Groups and the Golay Codes

There are several ways to define or construct the Mathieu groups, and one of the most approach-
able ways is to define the largest Mathieu groupM24 as the automorphism group of the binary Go-
lay code G24. So we first review generalities of linear codes and the binary Golay code in Section
2.2.1, and then introduce the Mathieu groups in Section 2.2.2. As for more details of the Mathieu
groups and their different constructions, see for example [Gri98, CS99, Iva18, Yos24, Cur25].

3The author thanks Masahiko Miyamoto for sharing these notes.
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2.2.1 The Golay Codes

Basic definitions for codes
A q-ary linear code C of dimension m and length n is an m-dimensional subspace of the n-

dimensional Fq-linear space (Fq)n, where q is a prime or a prime power and Fq is the finite field
of order q. In these notes, codes always refer to linear ones. An element of a code is called a
codeword, and the (Hamming) weight of a codeword w = (w1, . . . , wn) is wt(w) := |{i | wi ̸=
0}|. When the minimal nonzero weight minw∈C\{0} wt(w) is d, this linear code is denoted by
[n,m, d]q.

Two linear codes are said to be equivalent when one is mapped to the other by a monomial
matrix, which is a matrix containing exactly one nonzero element of Fq in each row and column.
An equivalent map from a code to itself is called an automorphism, and the set of all the auto-
morphisms of C forms the automorphism group Aut(C) of C. Be careful that some literature calls
the quotient of Aut(C) by its center F×

q · 1, which consists of the non-zero scalar matrices, the
automorphism group of C (see e.g. [AM66]).

When q = pa with p prime, the dual code C∗ of C is defined by

C∗ := {v ∈ (Fq)n | v · w̄ = 0 for any w ∈ C}, (2.5)

where w̄ := ((w1)
p, . . . , (wn)

p) is the conjugate of w, and v · w :=
∑

i viwi. A code C is said to
be self-dual if C∗ = C. Since dim C∗ = n−m, the length of a self-dual code must be even.

A binary code is said to be even if the weight of any codeword is even, and doubly-even if a
multiple of 4. An even but not doubly-even code is said to be singly-even. A singly-even self-dual
code is sometimes called Type I, and a doubly-even self-dual code Type II. A Type II code exists
if and only if the length is a multiple of 8 [CS99, Ch. 7 §6 Cor. 18].

The binary and ternary Golay codes
The (extended) binary Golay code G24 is the unique [24, 12, 8]2 linear code up to equivalence.

This code is doubly-even and self-dual. A basis of G24 can be read off from the proof of [CS99,
Ch. 10 §2.1 Thm. 7] as

(1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

(0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

(0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0),

(0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0),

(0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0),

(0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0),

(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0),

(0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0),

(0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0),

(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0),

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0),

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1).

(2.6)
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The 24 columns are labeled by 0, 1, . . . , 22,∞ in [CS99], which we will write 1, 2, . . . , 24 below.
The binary Golay code has 1, 759, 2576, 759, and 1 codewords with weight 0, 8, 12, 16, and

24, respectively. Codewords with weight 8 and 12 are called an octad and a dodecad, respectively.

The code obtained by dropping one coordinate ofG24 is called the (perfect) binary Golay code
G23. We omit “extended” or “perfect” when it is obvious from the context. The perfect Golay
code G23 is the unique [23, 12, 7]2 linear code up to equivalence. The extended Golay code G24

can be recovered from G23 by adding a parity bit (a bit which makes the weight of the codeword
even).

The perfect ternary Golay code G11 and the extended ternary Golay code G12 are respec-
tively the unique [11, 6, 5]3 and [12, 6, 6]3 linear codes up to equivalence. G11 can be obtained by
dropping one coordinate of G12, and G12 can be recovered from G11 by adding a zero-sum check
digit [CS99, (2.8.5)]. G12 is self-dual.

The proof of uniqueness of these four Golay codes G24, G23, G12, and G11 are comprehen-
sively explained in [MS77, Ch. 20], based on the original papers [Ple68, DG75]. [vL99, §4.2]
and [Ple98, §10] also contain some proofs.

2.2.2 The Mathieu Groups

The largest Mathieu group M24

The automorphism group Aut(G24) of a binary Golay code is the largest Mathieu group M24.
It is a sporadic simple group, and 5-transitive as a subgroup of S24 acting on 24 points. Here,

Definition 2.3 (k-transitive). An action of a group G on a set X is said to be k-transitive (k-
fold transitive) if for any k elements {i1, . . . , ik} ⊂ X and k elements {j1, . . . , jk} ⊂ X , there
is g ∈ G such that g · it = jt. In addition, if such g is unique for any {i1, . . . , ik} ⊂ X and
{j1, . . . , jk} ⊂ X , then the action is said to be sharply k-transitive. A 1-transitive action is just
called a transitive action.

A group G is said to be k-transitive, sharply k-transitive, if G is isomorphic to a subgroup of
Sn such that its action on Ωn = {1, . . . , n} is k-transitive, sharply k-transitive, respectively. ■

Obviously, a k-transitive group is also k′-transitive for k′ ≤ k.

In the above basis (2.6), M24 is generated by the following four permutations [CS99, Ch. 10
§2.1]:

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23),

(16, 8, 15, 6, 11, 21, 18, 12, 23, 22, 20)(4, 7, 13, 2, 3, 5, 9, 17, 10, 19, 14),

(24, 1)(16, 4)(8, 14)(15, 19)(6, 10)(11, 17)(21, 9)(18, 5)(12, 3)(23, 2)(22, 13)(20, 7),

(15, 18, 12, 20, 23)(21, 11, 8, 6, 22)(19, 5, 3, 7, 2)(9, 17, 14, 10, 13).

(2.7)

A presentation of M24 can be found in [WWT+] as

M24 = ⟨a, b | a2 = b3 = (ba)23 = [b−1, a]12 = [(bab)−1, a]5 = (b−1ab−1aba)3(b−1ababa)3 = ((b−1aba)3ba)4 = 1⟩, (2.8)
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where [y−1, x−1] = y−1x−1yx and note that the multiplication (2.2) in [WWT+] is converted to
(2.1) here. In M24 generated by (2.7), these generators a and b can be taken as4

a = (1, 8)(2, 7)(3, 19)(4, 23)(5, 20)(6, 15)(9, 16)(10, 11)(12, 22)(13, 18)(14, 24)(17, 21), (2.9)

b = (2, 9, 12)(3, 13, 24)(4, 17, 21)(5, 16, 15)(8, 10, 23)(11, 14, 22). (2.10)

The second largest Mathieu group M23

The Mathieu Group M23 is the stabilizer group of one point of the action of M24 on 24 points.
SinceM24 is transitive,M23 is unique up to isomorphism, regardless of the choice of the stabilized
point. Equivalently, M23 is the automorphism group Aut(G23) of the perfect binary Golay code
G23. It is also a sporadic simple group.

A presentation of M23 can be found in [WWT+] as

M23 = ⟨a, b | a2 = b4 = (ba)23 = (b2a)6 = [b−1, a]6 = (b2ab−1aba)4 = 1,

(b−1a)3(ba)3(b−1aba)2b2ab−1a(ba)3 = b2ab−1abab2aba(b−1ab2a)2(b2aba)3 = 1⟩. (2.11)

If we takeM23 as the subgroup ofM24 generated by (2.7) stabilizing the point 23, these generators
a and b can be taken as

a = (1, 15)(2, 20)(3, 12)(4, 19)(5, 17)(7, 13)(8, 18)(11, 14), (2.12)

b = (1, 12, 17, 21)(2, 6, 3, 8)(4, 9, 16, 20)(5, 23)(10, 15, 22, 13)(11, 19). (2.13)

More on Mathieu groups
There are five sporadic Mathieu groups: M24, M23, M22, M12, and M11.
We already introduced M24 and M23. M22 is the stabilizer group of two points (not as a set;

each point must be stabilized) of the action of M24 on 24 points. Since M24 is 2-transitive, M22 is
unique up to isomorphism, regardless of the choice of the stabilized points. In a similar manner,
since M24 is at most 5-transitive, we can also define M21, M20, and M19. M21 is simple, but
not sporadic because it is isomorphic to PSL(3,F4). M20

∼= 24 : A5 and M19
∼= 24 : 3 are not

simple [Yos24, §4.1].
M12 is the quotient Aut(G12)/⟨−1⟩ of the automorphism group of the extended ternary Golay

code by its center ⟨−1⟩ = Z2. Aut(G12) ∼= Z2.M12 is a non-split extension. M12 is sharply
5-transitive as a subgroup of S12. M11 is the point stabilizer of M12. The automorphism group
Aut(G11) of the perfect ternary Golay code is Z2 ×M11 [AM66, Theorem 1].

Thanks to the classification of finite simple groups, multiply transitive finite groups are also
classified [DM96, §7]. Obviously, Sn is sharply n-transitive, and An is sharply (n− 2)-transitive.

4These generators (2.9) and (2.10) were found in the result of the GAP [GAP22] command
IsomorphismGroups(MathieuGroup(24), G), where G is declared as a Group generated by the permu-
tations (2.7). This command returns one explicit isomorphism in the form of a map between generators, so it suffices
to check the relations in (2.8) for the displayed generators.
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Except for them, there are no k-transitive finite groups for k ≥ 6. M12 is the only sharply 5-
transitive finite group, M24 is the only non-sharply 5-transitive one, M11 is the only sharply 4-
transitive (and not 5-transitive) one, and M23 is the only non-sharply 4-transitive (and not 5-
transitive) one, except for Sn and An. M22 is 3-transitive, but there are other 3-transitive finite
groups, for example PSL(2,Fq).

We have introduced the Mathieu groups as the automorphism groups of the Golay codes (or
their subgroups or quotients), but there is another well-established construction as the automor-
phism groups of the Steiner system.

Definition 2.4 (the Steiner system). The Steiner system S(t, k, n) (1 ≤ t ≤ k ≤ n) is a set
{B1, . . . , Bb} of k-element subsets Bi ⊂ Ωn of Ωn = {1, . . . , n}, such that for any t-element
subset T ⊂ Ωn, there is a unique 1 ≤ i ≤ b such that T ⊂ Bi. ■

The Steiner system does not necessarily exist for a given (t, k, n), and if exists, b =
(
n
t

)
/
(
k
t

)
,

because the number
(
n
t

)
of t-element subsets must be equal to b ·

(
k
t

)
. It is known that the automor-

phism groups of S(5, 8, 24), S(4, 7, 23), and S(3, 6, 22) are M24, M23, and M22.2, respectively.
It is also known that the automorphism groups of S(5, 6, 12) and S(4, 5, 11) are M12 and M11,
respectively.

The Schur multipliers H2(G; U(1)) of the Mathieu groups M24,M23,M11 were correctly cal-
culated to be trivial in [BF66]. Those of M22,M12 were also calculated there, but turned out to be
wrong, and corrected in [BF68, Maz82] to be the cyclic groups of order 12, 2, respectively.

2.3 The Conway Groups and the Leech Lattice

The Conway groups are defined as the automorphism group (or its subgroups or quotients) of the
Leech lattice Λ24. So we first review generalities of lattices and the Leech lattice in Section 2.3.1,
and then we introduce the Conway groups in Section 2.3.2. As for the facts cited here and for
more on the Leech lattice and the Conway groups, see for example [Gri98, Ch. 9], [Yos24, Sec.
7]. [CS99] contains comprehensive explanations and data on lattices.

2.3.1 The Leech Lattice and the Odd Leech Lattice

Basic definitions for lattices
A lattice of rank n is a free abelian group L of rank n whose basis is an R-basis of a vector

space Rn with a symmetric bilinear form ⟨−,−⟩ : L×L→ R. Such a lattice is denoted by the pair
(L, ⟨−,−⟩), or just L, and naturally regarded as a subset of Rn. We will only consider the cases
where the symmetric bilinear forms are non-degenerate. If the symmetric bilinear form is positive-
definite, then the lattice is said to be positive-definite or Euclidean. If the symmetric bilinear form
is indefinite, and of signature (r, s), then the lattice is said to be indefinite or Lorentzian, and of
signature (r, s).
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A vector k in L is sometimes called a lattice point of L, and we also write the product ⟨k, k′⟩
of two vectors k, k′ ∈ L given by the symmetric bilinear form as k · k′. If any vectors k, k′ ∈ L
satisfy k · k′ ∈ Z, then the lattice is said to be integral. The squared length of a vector k ∈ L is
defined as |k|2 := k · k. A vector k ∈ L with |k|2 ∈ 2Z is called an even vector, and k ∈ L with
|k|2 ∈ 2Z + 1 is called an odd vector. An integral lattice is said to be even if its vectors are all
even, and odd otherwise. If we take a Z-basis e1, . . . , en of L, then the matrix G = [ei · ej]i,j is
called the Gram matrix of L.

An isometry or isomorphism g : L→ L′ of lattices L and L′ is an isomorphism of free abelian
groups compatible with their symmetric bilinear forms. The group of all the isometries L→ L, or
the automorphisms of L, is denoted by Aut(L) or O(L), but note that Aut(L) sometimes denotes
the automorphism group of just a free abelian group L (e.g. Section 5.2.3).

The dual lattice L∗ of L is defined by

L∗ := {l ∈ Rn | ⟨l, k⟩ ∈ Z for any k ∈ L}, (2.14)

with the same symmetric bilinear form as that of L. L is integral if and only if L ⊂ L∗. L is said
to be self-dual or unimodular if L∗ = L. An odd self-dual lattice is called Type I, and an even
self-dual lattice is called Type II.

Similarly to Type II codes, a Type II positive-definite lattice exists if and only if the rank is
a multiple of 8 [CS99, Ch. 7 §6 Cor. 18]. Up to isometry, the E8 lattice is the only one of rank
8. E8 ⊕ E8 and D+

16 are the only ones of rank 16. There are 24 Type II positive-definite lattices
of rank 24, and they are called the Niemeier lattices [Nie73]. 23 lattices of them have vectors
with squared length 2, whereas the last one, the Leech lattice Λ24, does not. Moreover, a Type
II indefinite lattice of signature (r, s) (r, s > 0) exists if and only if r − s ≡ 0 mod 8, and it is
unique up to isometry [Ser73, Ch. V].

Root lattices
A positive-definite even lattice generated by vectors with squared length 2 is called a root

lattice.5 Any root lattice is known to be a direct sum of the irreducible root lattices, which are

5Note that there is also the concept of a root of a semisimple Lie algebra g, whose squared length is not necessarily
2, and the root lattice Lg of g, which is the lattice generated by the roots of g. If all the roots have squared length 2,
then g is said to be simply-laced.

The subgroup Wg of the isometry group Aut(Lg) generated by the reflections with respect to the hyperplanes
perpendicular to roots is called the Weyl group of the Lie algebra g. The entire isometry group Aut(Lg) is known to
be the semidirect product Wg : Aut(Dynkin diagram).

The Weyl group WG is also defined for a connected compact Lie group G as follows. Let TG ∼= U(1)r be the
maximal torus in G, and N(TG) := {g ∈ G | gtg−1 ∈ TG for any t ∈ TG} be its normalizer. Since the conjugate
action of TG on TG is trivial, TG is a normal subgroup of N(TG). The Weyl group of the Lie group G is then
WG := N(TG)/TG. It is known that WG coincides with the Weyl group Wg of the Lie algebra g of the Lie group G.
The rank of Lg is r.

Whether N(TG) = TG.WG
∼= U(1)r.Wg splits or not, which is an analogous problem to the main question

of [Oka24], is answered in [CWW74, Theorem 2] for simple Lie groups. It depends on the Lie group G, and for
example, it does not split when G = E6, E7, E8.
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classified as the An lattices (n ∈ Z≥1), the Dn lattices (n ∈ Z≥4), and the E6, E7, E8 lattices,
defined as follows [CS99, Ch. 4].

• The An lattice is a root lattice of rank n defined as

An := {(x1, . . . , xn+1) ∈ Zn+1 |
n+1∑
i=1

xi = 0}, (2.15)

on the hyperplane Rn ∼= {x1+ · · ·+xn+1 = 0} ⊂ Rn+1, with the standard Euclidean metric
on Rn+1.

We can take a Z-basis e1, . . . , en of An as

ei = (0, . . . ,
i

1̌,−1, . . . , 0) ∈ Rn+1, (2.16)

and then the Gram matrix is

2 −1 0 · · · 0 0

−1 2 −1 · · · 0 0

0 −1 2 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 2 −1
0 0 0 · · · −1 2


. (2.17)

• The Dn lattice is a root lattice of rank n defined as

Dn := {k = (k1, . . . , kn) ∈ Zn |
n∑
i=1

ki ≡ 0 mod 2}, (2.18)

with the standard Euclidean metric on Rn.

We can take a Z-basis e1, . . . , en of Dn as

e1 = (−1,−1, 0, . . . , 0), (2.19)

ei = (0, . . . ,
i−1

1̌ ,−1, . . . , 0) (i = 2, . . . , n), (2.20)

and then the Gram matrix is

2 0 −1 0 · · · 0 0

0 2 −1 0 · · · 0 0

−1 −1 2 −1 · · · 0 0

0 0 −1 2 · · · 0 0
...

...
...

... . . . ...
...

0 0 0 0 · · · 2 −1
0 0 0 0 · · · −1 2


. (2.21)
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In addition, the D+
n lattice is defined as

D+
n := Dn ⊔ (

1

2
1⃗ +Dn). (2.22)

• The E8 lattice is a root lattice of rank 8 defined as

E8 := {k = (k1, . . . , k8) ∈ Z8 ⊔ (Z+
1

2
)8 |

n∑
i=1

ki ≡ 0 mod 2}, (2.23)

with the standard Euclidean metric on Rn. We have D+
8 = E8.

We can take a Z-basis e1, . . . , e8 of E8 as

e1 = (−1,−1, 0, . . . , 0), (2.24)

e2 = (
1

2
,−1

2
,−1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
), (2.25)

ei = (0, . . . ,
i−1

1̌ ,−1, . . . , 0) (i = 3, . . . , 8), (2.26)

and then the Gram matrix is

2 0 −1 0 · · · 0 0

0 2 0 −1 · · · 0 0

−1 0 2 −1 · · · 0 0

0 −1 −1 2 · · · 0 0
...

...
...

... . . . ...
...

0 0 0 0 · · · 2 −1
0 0 0 0 · · · −1 2


. (2.27)

The E7 lattice and the E6 lattice are defined as

E7 := {(k1, . . . , k8) ∈ E8 | k7 = k8}, (2.28)

E6 := {(k1, . . . , k8) ∈ E8 | k6 = k7 = k8}. (2.29)

The Niemeier lattices can be distinguished by their root sublattices, that is, the sublattice
generated by its vectors with squared length 2. A Niemeier lattice with its root sublattice being
X is often referred to as the X Niemeier lattice, say the (A1)

24 Niemeier lattice, except for the
Leech lattice Λ24 whose root sublattice is 0.

Lattices from codes
There are several ways to construct a lattice from a given code. We focus on the case of binary

codes here. See [CS99] for more on constructions.
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Let C ⊂ (F2)
n be a binary code of length n, and regard each codeword of C as a vector with

entries 0 or 1. We can construct a lattice Λ(C) of rank n as

Λ(C) := 1√
2
C +
√
2Zn ⊂ Rn, (2.30)

with the standard Euclidean metric k · k′ =
∑

i kik
′
i for k = (ki)i, k

′ = (k′i)i ∈ Rn as the
symmetric bilinear form. This construction is called Construction A [CS99, Ch. 7 §2]. This
lattice Λ(C) satisfies Λ(C∗) = Λ(C)∗. Hence, Λ(C) is integer if and only if C satisfies C ⊂ C∗, and
self-dual if and only if C is self-dual. In addition, Λ(C) is of Type I (odd self-dual) if and only if
C is of Type I (singly-even self-dual), and Type II (even self-dual) if and only if C is of Type II
(doubly-even self-dual). Another construction called Construction B [CS99, Ch. 7 §5] associates
the sublattice

ΛB(C) := {k = (k1, . . . , kn) ∈ Λ(C) |
√
2

n∑
i=1

ki ∈ 4Z} (2.31)

of Λ(C) to a binary code C.
For a doubly-even self-dual binary code C, we further consider the following constructions

[DGM94, §5.1]. We first define

Zn+ := {x ∈ Zn | |x|2 ∈ 2Z}, (2.32)

Zn− := {x ∈ Zn | |x|2 ∈ 2Z+ 1}. (2.33)

Recall that the length n of a doubly-even self-dual code is always a multiple of 8, and also define

Λ0(C) :=
1√
2
C +
√
2Zn+, (2.34)

Λ1(C) :=
1√
2
C +
√
2Zn−, (2.35)

Λ2(C) :=
1

2
√
2
1⃗ +

1√
2
C +
√
2Zn

(−)
n
8 +1 , (2.36)

Λ3(C) :=
1

2
√
2
1⃗ +

1√
2
C +
√
2Zn

(−)
n
8
, (2.37)

where 1⃗ := (1, . . . , 1). All the vectors in Λi(C) for i = 0, 1, 3 are even, whereas those in Λ2(C)
are odd. Then we can construct some more lattices as in Table 2.2.

Table 2.2: Lattices constructed from a doubly-even self-dual binary code C. On the right side
of the vertical line, the names of lattices constructed from the binary Golay code G24 and their
isometry groups are shown.

name of construction lattice property for C = G24 Aut(lattice)
Construction A Λ(C) = Λ0(C) ∪ Λ1(C) even self-dual (A1)

24 Niemeier lattice 224 :M24

Construction B ΛB(C) = Λ0(C) even
twisted construction Λ̃(C) = Λ0(C) ∪ Λ3(C) even self-dual Leech lattice Λ24 Co0
− Λ̃′(C) = Λ0(C) ∪ Λ2(C) odd self-dual odd Leech lattice O24 212 :M24
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The odd Leech lattice O24

The odd Leech lattice O24 is the unique positive-definite odd self-dual lattice of rank 24 with-
out roots (vectors of squared length 2) up to isometry. It can be constructed from the binary Golay
code G24 as

O24 = (
1√
2
G24 +

√
2Z24

+ ) ∪ (
1

2
√
2
1⃗ +

1√
2
G24 +

√
2Z24

+ ). (2.38)

Historically, the odd Leech lattice was first found in [OP44].
If we use the binary Golay codeG24 with the basis (2.6), then we can take a Z-basis e1, . . . , e24

of (2.38) as

e1 = 1
2
√
2
1⃗,

e2 = 1√
2
(the second line from the bottom of (2.6)),

...
e12 = 1√

2
(the first line of (2.6)),

e13 =
√
2(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, . . . , 0),

e14 =
√
2(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, . . . , 0),

...
e23 =

√
2(1, 1, 0, . . . , 0),

e24 =
√
2(2, 0, . . . , 0).

(2.39)

In fact, O24 in (2.38) obviously contains SpanZ{ei}i, and the opposite direction of the inclusion
can be checked as follows. Since it is obvious that SpanZ{ei}i contains 1

2
√
2
1⃗ and 1√

2
G24, it

suffices to check that it also contains
√
2Z24

+ . Here, Z24
+ is generated by the 24 vectors

(1, 0, . . . , 0, 0, 1),

(1, 0, . . . , 0, 1, 0),

...

(1, 1, 0, . . . , 0),

(2, 0, . . . , 0).

Since the last 12 vectors of
√
2×(above 24 vectors) are exactly e13, . . . , e24, it suffices to check

that the first 12 vectors of
√
2×(above 24 vectors) can be written as Z-linear combinations of

e1, . . . , e24, which can be checked by computer.
The isometry group Aut(O24) of the odd Leech lattice is known to be 212 : M24 [CS99, Ch.

17]. In the construction (2.38), these automorphisms are apparent because M24 = Aut(G24) and
212 are the maps k = (ki)i 7→ ((−1)wiki)i where w = (wi)i ∈ G24.

If we use Construction A for ternary codes, an odd Leech lattice can also be constructed from
any self-dual ternary code of length 24 with the minimal nonzero weight 9. It is known that
there are only two such ternary codes up to equivalence [LPS81]: the extended quadratic residue
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code Q24 (see e.g. [MS77, Ch. 16]), and the symmetric code P24 defined by Pless [Ple69, Ple72]
[MS77, Ch. 16 §8]. However, the automorphism groups of these ternary codes are Aut(Q24) =

(F3)
× × PSL(23,F2) [MS77, Apply Theorem 13 in Ch. 16 §5 to p = 23] and Aut(P24) =

Z4 × PGL(11,F2) [MPS76, §5.2], so the structure of Aut(O24) = 212 : M24 is not apparent
in these constructions of odd Leech lattices. See [GJF18, Example 4.5] for application of these
constructions to N = 1 supersymmetries of the lattice VOAs.

The Leech lattice Λ24

The Leech lattice Λ24 is the unique positive-definite even self-dual lattice of rank 24 without
roots (vectors of squared length 2) up to isometry. It can be constructed from the binary Golay
code G24 as

Λ24 = (
1√
2
G24 +

√
2Z24

+ ) ∪ (
1

2
√
2
1⃗ +

1√
2
G24 +

√
2Z24

− ). (2.40)

Historically, the Leech lattice was discovered by Leech in [Lee67, §2.31], but it is also said that
one of the more than 10 Niemeier lattices, which was reported to be found by Witt in [Wit41, p.
324] without further details, is the Leech lattice [Wit98, p. 328-329]. See an informative video
[Bor20] by Borcherds for more details.

For an even lattice L, we define

Ld := {k ∈ L | |k|2 = 2d}. (2.41)

An even lattice L of rank 24 is isomorphic to the Leech lattice Λ24, if and only if it satisfies

|L1| = 0, (2.42)

|L2| = 196560, (2.43)

|L3| = 16773120, (2.44)

|L4| = 398034000. (2.45)

We consider the quotient Λ24/2Λ24 of Λ24 by the equivalence relation k ∼ k′ ⇔ k−k′ ∈ 2Λ24.
We can take a complete set of representatives of Λ24/2Λ24 as follows.

• Take 0 ∈ Λ24.

• From (Λ24)2 and (Λ24)3, if we take k, then do not take −k.

• For k ∈ (Λ24)4, its equivalence class k + 2Λ24 contains 48 vectors of squared length 8
as (k + 2Λ24) ∩ (Λ24)4 = {±k,±k2, . . . ,±k24}, so take one of them. It is known that
{k, k2, . . . , k24} constitutes an orthogonal basis of R24.
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2.3.2 The Conway Groups

The Conway groups Co0 and Co1
The isometry group Aut(Λ24) of the Leech lattice is the largest Conway group Co0. It is not a

simple group, but its quotient by the center {±1} is the largest sporadic Conway group Co1.
From the construction (2.40), it is apparent that Co0 contains 212 : M24 as a subgroup, where

M24 = Aut(G24) and 212 are the maps k = (ki)i 7→ ((−1)wiki)i where w = (wi)i ∈ G24. This
subgroup 212 : M24 is called the monomial subgroup of Co0. Co0 is generated by this monomial
subgroup and a specific order-2 element. As a subgroup of O(R24), Co0 does not contain matrices
of determinant −1, and hence Co0 is a subgroup of SO(R24).

Generators of Co0 as a subgroup of SL(24,Z) can be found on the Co1 page of [WWT+] as

A =



2 0 0 −3 −2 −1 0 −2 1 1 0 1 1 0 0 1 −1 −1 0 0 −1 0 0 0

−4 1 0 6 4 2 2 3 −1 −3 −1 0 −2 −1 −1 −1 1 1 0 1 0 0 0 0

4 −1 0 −6 −4 −2 −3 −4 2 4 3 −3 2 1 2 0 1 −1 −1 −1 1 0 −1 1

4 1 1 −6 −3 −2 −1 −4 2 2 1 0 1 0 1 2 0 −1 −1 0 −1 0 0 1

5 −2 0 −8 −5 −3 −2 −4 2 4 2 0 2 2 1 1 −1 −1 0 0 0 1 −1 0

−3 0 −1 4 1 2 1 1 0 −2 0 0 0 −1 −1 −1 0 0 0 0 −1 −1 0 0

1 0 −1 −2 −2 −1 0 −2 0 1 1 0 0 0 0 0 −1 0 0 −1 0 0 0 0

−3 1 −1 5 3 1 2 2 −1 −2 −1 0 −1 −1 −1 −1 0 0 1 0 0 0 0 0

−2 2 0 3 3 0 2 2 0 −1 −2 1 0 −1 0 0 1 −1 1 1 0 0 0 1

9 −1 −1 −13 −9 −5 −4 −9 4 6 4 −1 3 1 2 2 −1 −3 −1 −1 −2 1 −1 1

1 −1 −1 −3 −3 −1 −1 −4 2 2 3 −2 1 0 0 0 0 0 −1 −1 0 0 −1 1

4 −1 1 −6 −4 −2 −2 −3 2 3 2 −1 2 1 1 1 0 −1 −1 0 0 0 −1 1

−4 0 0 5 3 2 2 3 −2 −2 −1 0 −2 0 −1 −1 0 2 0 0 1 0 0 −1
8 2 2 −9 −5 −4 0 −5 2 2 2 1 0 1 1 2 −1 0 −1 1 −1 1 0 1

−3 0 0 3 3 1 0 3 −1 −1 −1 0 0 0 0 0 1 0 1 0 1 −1 0 0

−5 2 0 6 4 3 3 2 −1 −4 −2 1 −2 −2 −2 0 0 1 0 0 −1 −1 1 0

3 0 0 −3 −3 −1 0 −2 0 1 1 0 0 0 0 0 −1 0 −1 −1 0 0 0 0

0 0 0 1 1 0 0 2 −1 0 −2 1 0 0 0 0 0 −1 1 0 0 0 0 −1
−1 0 −1 2 0 1 −1 0 0 0 0 −1 1 −1 0 −1 1 −1 0 −1 0 −1 0 0

−4 −1 −1 4 2 2 0 2 −1 −2 −1 1 −1 −1 −1 0 0 1 0 0 −1 0 1 −1
−9 1 0 11 7 5 3 6 −2 −5 −3 1 −2 −2 −2 −1 1 2 0 1 0 −1 1 0

−6 1 0 9 5 4 3 4 −2 −4 −1 −1 −2 −1 −1 −2 1 2 0 0 1 −1 0 0

5 1 −1 −7 −5 −3 −1 −6 2 3 3 0 1 0 1 1 −1 0 −1 −1 −1 1 0 1

6 0 1 −6 −4 −2 −2 −3 1 2 1 0 2 1 1 1 −1 −1 0 0 −1 0 0 0



T

, (2.46)

B =



0 0 1 0 0 0 −1 1 1 0 −1 0 1 0 1 0 1 0 0 1 0 1 0 1

3 1 −1 −3 −2 −2 0 −3 1 2 2 −1 1 0 1 0 0 −1 0 −1 0 −1 −1 0

−4 0 −1 7 4 3 1 4 −3 −3 −2 0 −1 −1 −1 −1 0 0 1 −1 0 −1 1 −1
0 −1 0 1 0 1 −1 1 0 0 0 −1 1 0 1 −1 0 0 0 0 0 0 0 0

6 0 2 −6 −4 −2 −3 −2 1 2 1 −1 1 1 2 1 1 −1 −1 0 0 1 0 1

2 0 −1 −5 −3 −3 −1 −4 3 3 1 0 2 0 1 1 0 −1 0 0 0 1 −1 1

−10 0 0 12 8 5 4 7 −3 −6 −3 1 −3 −1 −3 −1 0 3 1 1 1 −1 1 −1
−1 4 1 5 4 1 3 3 −2 −3 −2 1 −1 −1 0 0 1 1 1 0 0 −1 1 0

−1 0 1 3 2 1 −1 3 −1 −1 −2 0 1 0 1 0 1 0 1 0 0 0 1 0

2 2 1 0 0 0 0 0 0 0 0 −1 1 0 2 0 1 0 0 0 0 0 0 1

−5 3 0 11 7 4 4 6 −4 −5 −3 0 −2 −2 −1 −2 1 1 1 −1 1 −2 1 −1
3 0 1 −2 −1 −1 −1 0 0 1 −1 0 1 0 1 0 0 −1 0 0 0 1 0 0

−4 0 −1 5 3 2 2 2 −1 −3 0 0 −2 −1 −2 −1 0 1 0 0 0 −1 0 −1
2 −1 1 −2 −1 −1 −1 0 1 1 1 −1 1 1 1 0 0 0 0 1 1 0 −1 0

2 −1 1 −3 −1 −1 −1 0 −1 1 −1 1 −1 1 0 1 −1 0 0 0 0 1 1 −1
−2 0 −1 3 1 1 1 1 0 −1 0 0 0 −1 0 −1 0 1 0 0 0 0 0 0

−11 −2 −1 12 7 5 3 7 −2 −5 −3 1 −2 −1 −3 −2 0 2 1 1 1 0 0 −1
−2 0 1 2 2 1 0 3 −1 −1 −2 1 −1 0 0 0 1 0 0 1 0 1 0 0

−6 1 −1 7 5 2 2 4 −2 −2 −3 1 −1 −1 −1 −1 1 0 1 0 1 0 0 0

−3 1 −1 3 2 1 2 0 0 −1 0 0 −1 −1 −1 −1 0 0 0 0 0 −1 0 0

2 −2 −2 −6 −5 −2 −2 −6 3 4 3 −1 2 0 0 0 −1 −1 −1 −1 −1 0 −1 0

2 −1 −2 −4 −4 −1 −1 −5 2 2 4 −2 1 0 0 0 −1 0 −1 −2 0 −1 −1 0

−6 1 0 8 5 4 3 3 −2 −4 −1 0 −2 −1 −2 −1 0 2 0 0 0 −2 1 −1
14 1 2 −18 −11 −7 −4 −10 4 7 4 0 3 2 3 3 −1 −2 −2 0 −1 2 −1 2



T

, (2.47)

where the transpose on the right-hand side is taken just for the convenience of notation. These
generators satisfy A2 = −1 and B3 = 1.
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The Conway group Co0 generated by these generators A and B is the isometry group of a
lattice (Z24, q), where q is some symmetric bilinear form which makes (Z24, q) isomorphic to
the Leech lattice. The matrix form of q up to scalar multiplication can be found by solving the
conditions

AT qA = q, BT qB = q, (2.48)

by Mathematica [Wol23]. Note that the elements of the Conway group Co0 in this notation act on
the column vectors in the lattice (Z24, q) from the left. The result is

q =



4 −2 −2 2 2 2 −1 −1 2 2 −2 2 −2 1 −1 1 1 2 0 −1 0 −2 −2 2

−2 4 0 0 −2 0 −1 2 0 0 2 −1 1 1 −1 1 −2 −2 −1 1 1 2 1 −2
−2 0 4 0 0 −2 0 0 0 0 2 0 0 −2 1 −1 −1 −1 1 −1 −1 1 0 −1
2 0 0 4 0 0 −2 −1 2 2 0 2 −2 1 0 2 −1 0 −1 0 1 −1 −1 0

2 −2 0 0 4 0 −1 −1 1 1 −1 1 −1 0 0 −1 0 2 0 −2 −2 −1 −2 2

2 0 −2 0 0 4 0 0 1 1 −1 1 −1 1 −1 1 1 0 1 0 1 0 −1 1

−1 −1 0 −2 −1 0 4 1 −1 −1 0 −2 2 0 0 0 2 −1 0 0 −1 1 2 −1
−1 2 0 −1 −1 0 1 4 1 1 2 −1 1 0 −1 1 −1 −1 −1 −1 −1 1 1 −1
2 0 0 2 1 1 −1 1 4 2 0 2 −2 1 0 1 −1 0 −1 −2 0 −1 −1 0

2 0 0 2 1 1 −1 1 2 4 0 1 −2 0 −1 1 −1 1 0 −1 −1 −1 −1 1

−2 2 2 0 −1 −1 0 2 0 0 4 0 1 −1 0 1 −1 −2 0 0 0 2 1 −2
2 −1 0 2 1 1 −2 −1 2 1 0 4 −2 0 1 0 0 1 0 −1 1 −2 −2 1

−2 1 0 −2 −1 −1 2 1 −2 −2 1 −2 4 0 −1 0 1 −1 −1 1 0 2 2 −2
1 1 −2 1 0 1 0 0 1 0 −1 0 0 4 −1 1 0 −1 −2 0 0 0 0 0

−1 −1 1 0 0 −1 0 −1 0 −1 0 1 −1 −1 4 −1 −1 0 0 0 0 −1 0 0

1 1 −1 2 −1 1 0 1 1 1 1 0 0 1 −1 4 0 −1 −1 0 1 1 0 −1
1 −2 −1 −1 0 1 2 −1 −1 −1 −1 0 1 0 −1 0 4 1 1 0 0 0 0 0

2 −2 −1 0 2 0 −1 −1 0 1 −2 1 −1 −1 0 −1 1 4 1 −1 −1 −2 −2 2

0 −1 1 −1 0 1 0 −1 −1 0 0 0 −1 −2 0 −1 1 1 4 0 0 0 −1 1

−1 1 −1 0 −2 0 0 −1 −2 −1 0 −1 1 0 0 0 0 −1 0 4 2 0 2 −1
0 1 −1 1 −2 1 −1 −1 0 −1 0 1 0 0 0 1 0 −1 0 2 4 0 1 −1
−2 2 1 −1 −1 0 1 1 −1 −1 2 −2 2 0 −1 1 0 −2 0 0 0 4 1 −2
−2 1 0 −1 −2 −1 2 1 −1 −1 1 −2 2 0 0 0 0 −2 −1 2 1 1 4 −2
2 −2 −1 0 2 1 −1 −1 0 1 −2 1 −2 0 0 −1 0 2 1 −1 −1 −2 −2 4



. (2.49)

The Conway groups Co2 and Co3
There are two more sporadic simple Conway groups Co2 and Co3. They are the stabilizer

groups of one vector in (Λ24)2 and (Λ24)3, respectively, under the action of Co0 on Λ24. It is
known that the actions of Co0 on (Λ24)2 and (Λ24)3 are transitive, so these groups are unique up
to isomorphism. Since −1 ∈ Co0 does not preserve any non-zero vector, Co2 and Co3 are also
isomorphic to subgroups of Co1.

2.4 The Monster Group

The monster group M, whose existence was predicted independently by Fischer and Griess in
1973, was first constructed by Griess in 1981 [Gri81, Gri82], as the automorphism group of a
certain algebra B♮ with a bilinear form τ . The algebra B♮ is called the Griess algebra. More
precisely, Griess constructed M as a subgroup of Aut(B♮, τ), and Aut(B♮, τ) = M was later
shown in [Tit84].

As a vector space, B♮ is a 196884-dimensional representation space of a group C(Λ24) =

21+24.Co1 over Q. In [Gri82], a specific commutative non-associative product and an associative6

symmetric bilinear form τ are introduced to this C(Λ24)-module, in a way compatible with the

6A bilinear form τ is called associative if it satisfies τ(u, v · w) = τ(u · v, w).
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C(Λ24)-action, which defines the C(Λ24)-algebra B♮ called the Griess algebra. Now, Aut(B♮, τ)

contains C(Λ24), and a specific order-2 element σ can be found in Aut(B♮, τ) \ C(Λ24). Finally,
the group generated by C(Λ24) and σ is shown to be simple, and have the right order |M|.

WhenB♮ was introduced in [Gri82], the monster VOA V ♮ [FLM88] (explained later in Section
5) was not yet constructed. However, in the modern understanding, it is natural to regardB♮ as the
weight-2 subspace (V ♮)2 of V ♮. In fact, one of the important results on the monstrous moonshine
is that Aut(V ♮) = M. As we will see in Section 5, V ♮ is the Z2-orbifold of the Leech lattice VOA,
and hence its weight-2 subspace (V ♮)2 = B♮ consists of

• Span{αi−1α
j
−1|0⟩}i,j=1,...,24, which is the symmetric tensor product of 24, so the dimension

is 25×24
2

= 1 + 299, containing the trivial representation Span{
∑

i α
i
−1α

i
−1|0⟩} of SO(24).

• Span{|k⟩+ |−k⟩}k∈(Λ24)2 , whose dimension is |(Λ24)2|/2 = 98280.

• Span{ci− 1
2

|s⟩}i=1,...,24,|s⟩∈X (Λ24), where X (Λ24) is the 2
24
2 -dimensional irreducible represen-

tation of a certain gamma matrix algebra Γ(Λ24), so the dimension is 24× 2
24
2 = 98304.

These three subspaces are denoted by U , V , and W , respectively, in [Gri82]. In the language of
VOA (see Section 4), the commutative non-associative product on B♮ is introduced as

v · w = v(1)w, (2.50)

and the associative symmetric bilinear form τ is introduced as

τ(v, w)1 = v(3)w, (2.51)

for any v, w ∈ (V ♮)2. The one-dimensional subspace in the first (1 + 299)-dimensional subspace
will turn out to be the trivial representation of M = Aut(B♮, τ), and the irreducible decomposition
of B♮ as a representation of M is 196884 = 1 + 196883, where 196883 is the smallest nontrivial
irreducible representation of M.

See for example [Gri98, Ch. 11] and [Har99] for more on the Griess algebra and the monster
group. A simpler construction of the monster group was provided in [Con85], and reviewed
in [CS99, Ch. 29]. See [Iva09] for another construction using the amalgam method.
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3 Modular Functions and Weak Jacobi Forms
This Section 3 collects the basic definitions and important examples of modular functions and
weak Jacobi forms. After mentioning the action of the modular group on the upper half-plane in
Section 3.1, we will review modular functions and weak Jacobi forms in Sections 3.2 and 3.3,
respectively. In the last Section 3.4, we will review the elliptic genes of CFT, through which weak
Jacobi forms appear in physics.

More details on the facts cited here about the modular functions can be found, for example,
in [Ser73, Ch. VII] and [DS05, Ch. 1]. The foundational literature on weak Jacobi forms is [EZ85],
and we will follow a summary in [DMZ12, §4].

3.1 Modular Group

The special linear group

SL(2,Z) =
{(

a b

c d

) ∣∣∣∣ a, b, c, d ∈ Z, ad− bc = 1

}
(3.1)

is generated by

T :=

(
1 1

0 1

)
, S :=

(
0 −1
1 0

)
. (3.2)

It acts on the upper half-plane of the complex plane

H := {τ ∈ C | Im(τ) > 0} (3.3)

as (
a b

c d

)
: τ 7→ aτ + b

cτ + d
. (3.4)

If we define a complex torus as Eτ := C/(Z ⊕ τZ), then it is known that7 Eτ and Eτ ′ are
isomorphic as complex manifolds if and only if there is g ∈ SL(2,Z) such that g · τ = τ ′.

Since the center Z2 = ⟨−I⟩ of SL(2,Z) acts trivially on H, we can say that PSL(2,Z) =

SL(2,Z)/⟨−I⟩ acts on H. This group PSL(2,Z) is called the modular group. However, in the
following discussions, it suffices to use SL(2,Z). In fact, some literature also calls SL(2,Z) the
modular group.

Lastly, we remark that GL(2,Z) is generated by T , S, and

P :=

(
−1 0

0 1

)
. (3.5)

7This fact can be understood as follows [ES15, §5.1]. The lattice in the complex plane spanned by ω1, ω2 ∈ C

is the same as the one spanned by ω′
1, ω

′
2 ∈ C such that

(
ω′
2

ω′
1

)
=

(
a b

c d

)(
ω2

ω1

)
where

(
a b

c d

)
∈ SL(2,Z). (A

general GL(2,Z) transformation may reverse the orientation of the lattice.) In addition, a torus C/(ω1Z ⊕ ω2Z) is
isomorphic to C/(λω1Z⊕λω2Z) where λ ∈ C, so we can regard the SL(2,Z) transformations on ω1, ω2 as those on
τ := ω2

ω1
.
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3.2 Modular Functions

Definition 3.1 (modular function and modular form).

(1) A meromorphic function f : H → C is called a weakly modular function of weight k ∈ Z
if it satisfies

f(
aτ + b

cτ + d
) = (cτ + d)kf(τ) for any

(
a b

c d

)
∈ SL(2,Z), (3.6)

or equivalently,

f(τ + 1) = f(τ), f(−1

τ
) = τ kf(τ). (3.7)

From this periodicity under τ 7→ τ + 1, we can regard f as a function of q := e2π
√
−1τ .

(2) A weakly modular function f : H → C is called a modular function if, as a function of q,
it extends to a meromorphic function at q = 0. In such a case, we will simply say that f is
meromorphic at q = 0 or8 at τ =∞.

By this definition, a modular function f admits a Laurent expansion at q = 0,

f(τ) =
∞∑

n=n0

cnq
n. (3.8)

(3) A modular function f : H → C is called a weakly holomorphic modular form if it is
holomorphic on H but not necessarily at q = 0. That is, a pole is allowed to exist only at
q = 0.

(4) A weakly holomorphic modular form f : H→ C is called a modular form if it is holomor-
phic at q = 0. In this case, f(∞) denotes the value of (the extended) f(τ) at q = 0.

(5) A modular form f : H→ C is called a cusp form if f(∞) = 0.

■

There is no non-zero weakly modular function of odd weight. This is because, if k is odd, we
have f(τ) = −f(τ) by applying a = d = −1 and b = c = 0 to (3.6).

Here are some examples of modular functions and modular forms.

8Here,∞ denotes the point at infinity. Of course, as a limit, q → 0 as Im(τ)→∞.
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• Let k ≥ 4 be an even integer. The Eisenstein series Gk(τ) of weight k defined as follows is
a modular form of weight k.

Gk(τ) :=
∑

(m,n)∈Z2\{(0,0)}

1

(m+ nτ)k
(3.9)

= 2ζ(k) + 2
(2π
√
−1)k

(k − 1)!

∞∑
c=1

∞∑
d=1

dk−1qcd (3.10)

= 2ζ(k) + 2
(2π
√
−1)k

(k − 1)!

∞∑
n=1

(∑
d|n

dk−1

)
qn. (3.11)

Here, ζ(k) :=
∑∞

n=1
1
nk is the Riemann zeta function, and its value for even k is known to

be ζ(k) = − (2π
√
−1)k

2k!
Bk, where Bk is the Bernoulli number defined as x

ex−1
=
∑∞

k=0
Bk

k!
xk.

To calculate it, the recurrence relation Bk = − 1
k+1

∑k−1
i=0

(
k+1
i

)
Bi and B0 = 1 are useful.

The normalized Eisenstein series

Ek(τ) :=
1

2ζ(k)
Gk(τ) = 1− 2k

Bk

∞∑
n=1

(∑
d|n

dk−1

)
qn (3.12)

is also frequently used. For example, since B4 = − 1
30

and B6 =
1
42

,

E4(τ) =
720

(2π)4
G4(τ) = 1 + 240

∞∑
n=1

(∑
d|n

d3
)
qn (3.13)

= 1 + 240q + 2160q2 + · · · , (3.14)

E6(τ) =
30240

(2π)6
G6(τ) = 1− 504

∞∑
n=1

(∑
d|n

d5
)
qn (3.15)

= 1− 504q − 16632q2 − · · · . (3.16)

• The modular discriminant ∆(τ) defined as follows is a cusp form of weight 12.

∆(τ) := (60G4(τ))
3 − 27(140G6(τ))

2 (3.17)

=
(2π)12

1728
(E4(τ)

3 − E6(τ)
2) (3.18)

= (2π)12η(τ)24 (3.19)

= q

∞∏
n=1

(1− qn)24, (3.20)

where η(τ) is the Dedekind eta function defined in Appendix B as (B.38). The normalized
one

∆̃(τ) :=
1

(2π)12
∆(τ) = η(τ)24 (3.21)

is also frequently used.
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• The modular j-function or the j-invariant j(τ) defined as follows is a weakly holomorphic
modular function of weight 0.

j(τ) := 1728
(60G4(τ))

3

∆(τ)
=
E4(τ)

3

∆̃(τ)
(3.22)

= q−1 + 744 + 196884q + 21493760q2 + · · · . (3.23)

The weight of j(τ) being 0 means that j : H → C is a function which is also well-defined
on H/SL(2,Z). In addition, j : H/SL(2,Z) → C is known to be a bijection. As remarked
in Section 3.1, elements of H/SL(2,Z) are in one-to-one correspondence with the isomor-
phism classes of complex tori as [τ ] ↔ [Eτ ]. Therefore, j(τ) gives a complete invariant of
the isomorphism classes of complex tori.

• Let L be a positive-definite lattice of rank n. The theta function of the lattice L is defined as

ΘL(τ) :=
∑
k∈L

q
1
2
|k|2 . (3.24)

If L is even self-dual, then ΘL(τ) is a modular form of weight n
2
.

For example, the theta function of the E8 lattice is ΘE8(τ) = E4(τ). We can see it as
follows. The constant term of ΘE8(τ) is of course ΘE8(τ) = 1 +O(q). As in the following
Theorem 3.2, the ring of modular forms is C[E4, E6], so this constant term determines the
modular form ΘE8(τ) of weight 4 as ΘE8(τ) = E4(τ). In particular, we can say that

j(τ) =
ΘE⊕3

8
(τ)

η(τ)24
. (3.25)

More generally, we sometimes define the theta function ΘL(τ, τ) of a lattice L of signature
(r, s) (see (5.27)).

Obviously, all modular functions of the same weight constitute a C-vector space. In addition,
the multiplication of two modular functions of weight m and m′ is a modular function of weight
m + m′. Therefore, if we allow the sum of modular functions of inhomogeneous weights, then
we obtain the graded ring of all (the inhomogeneous sums of) modular functions. Furthermore,
its subrings are known to have the following structures. Let R[X1, . . . , Xr] denote the polynomial
ring over a commutative ring R.

Theorem 3.2.

• The ring of modular functions of weight 0 constitutes the rational function field C(j).

• The ring of weakly holomorphic modular forms is C[E4, E6, ∆̃
−1].

In particular, the ring of weakly holomorphic modular forms of weight 0 is C[j].
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• The ring of modular forms is C[E4, E6].

In particular, there is no non-zero modular form of weight k < 4.

• The ring of weakly holomorphic modular forms with integral q-expansion coefficients (cn ∈
Z in (3.8)) is9 (Z[E4, E6, ∆̃]/∼)[∆̃−1], where the relation∼ is defined by 1728∆̃ ∼ (E4)

3−
(E6)

2.

• The ring of modular forms with integral q-expansion coefficients (cn ∈ Z in (3.8)) is
Z[E4, E6, ∆̃]/∼, with the above relation ∼.

3.3 Weak Jacobi Forms

Definition 3.3. Let φ : H× C→ C be a holomorphic function satisfying

φ(
aτ + b

cτ + d
,

z

cτ + d
) = (cτ + d)ke2π

√
−1m cz2

cτ+dφ(τ, z) for any
(
a b

c d

)
∈ SL(2,Z), (3.26)

φ(τ, z + λτ + µ) = e−2π
√
−1m(λ2τ+2λz)φ(τ, z) for any λ, µ ∈ Z, (3.27)

where k ∈ Z is called the weight and m ∈ Z>0 is called the index. These transformations are
equivalent to

φ(τ + 1, z) = φ(τ, z), φ(−1

τ
,
z

τ
) = τ ke2π

√
−1m z2

τ φ(τ, z), (3.28)

φ(τ, z + 1) = φ(τ, z), φ(τ, z + τ) = e−2π
√
−1m(τ+2z)φ(τ, z). (3.29)

(The last transformation φ(τ, z + τ) also follows from those of φ(− 1
τ
, z
τ
) and φ(τ, z + 1).) From

the periodicity under τ 7→ τ + 1 and z 7→ z + 1, we can regard φ as a function of q := e2π
√
−1τ

and y := e2π
√
−1z. We further assume that φ admits a Fourier expansion

φ(τ, z) =
∑
n,r∈Z

c(n, r)qnyr. (3.30)

(1) φ is called a weakly holomorphic Jacobi form if there exists n0 ∈ Z such that c(n, r) = 0

for n < n0.

(2) φ is called a weak Jacobi form if c(n, r) = 0 for n < 0.

(3) φ is called a (holomorphic) Jacobi form if c(n, r) = 0 for 4mn < r2.

(4) φ is called a Jacobi cusp form if c(n, r) = 0 for 4mn ≤ r2.

■
9See https://mathoverflow.net/questions/386020/modular-forms-over-mathbbz-vs-modular-forms-with-integral-

fourier-coefficie.
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If we set m = 0, then φ(τ, z) as a function of z is a holomorphic doubly-periodic function,
and such a function is known to be constant with respect to z. Therefore, a weakly holomorphic
Jacobi form of weight k and index 0 is just a modular function of weight k. We can also say that if
φ(τ, z) is a weakly holomorphic Jacobi form of weight k and index m, then φ(τ, 0) is a modular
function of weight k. Similarly to the case of modular functions, there is no non-zero weakly
holomorphic Jacobi form of odd weight.

Important examples of weak Jacobi forms are10

φ−2,1(τ, z) := −
θ1(τ, z)

2

η(τ)6
, (3.31)

φ0,1(τ, z) := 4

(
θ2(τ, z)

2

θ2(τ, 0)2
+
θ3(τ, z)

2

θ3(τ, 0)2
+
θ4(τ, z)

2

θ4(τ, 0)2

)
, (3.32)

where θi(τ, z) (i = 1, 2, 3, 4) and η(τ) are the elliptic theta functions and the Dedekind eta func-
tion, respectively, introduced in Appendix B. These φk,m(τ, z) are weak Jacobi forms of weight k
and index m.

Similarly to the case of modular functions, we have the graded ring of all (the inhomogeneous
sums of) weak Jacobi forms. It has the following structure. If we write the C-vector space of
modular forms of weight k asMk, then recall that the graded ring of modular forms is

⊕
k∈ZMk =

C[E4, E6].

Theorem 3.4. Let Jweak
k,m denote the ring of weak modular forms of weight k and index m. The

ring of weak Jacobi forms has the structure

⊕
k∈Z,m∈Z>0

Jweak
k,m =

(⊕
k∈Z

Mk

)
[φ−2,1, φ0,1] (3.33)

= C[E4, E6, φ−2,1, φ0,1]. (3.34)

In particular,

Jweak
k,m =

m⊕
j=0

Mk+2j · φj−2,1φ
m−j
0,1 . (3.35)

Table 3.1: Generators of the ring of weak Jacobi forms.

weight k index m Fourier expansion
E4 4 0 1 + 240q + 2160q2 + · · ·
E6 6 0 1− 504q − 16632q2 − · · ·
φ−2,1 −2 1 y − 2 + y−1 − 2(y − 2 + y−1)2q + · · ·
φ0,1 0 1 y + 10 + y−1 + (10y2 − 64y + 108− 64y−1 + 10y−2)q + · · ·

10The minus sign in (3.31) is needed to obtain φ−2,1(τ, z) = (y
1
2 − y− 1

2 )2 + · · · , because we have
√
−1 in the

definition (B.21) of θ1.
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Extremal elliptic genus
As an example, the weak Jacobi form Zm=4

ext (τ, z) of weight 0 and index 4, starting with the
terms

Zm=4
ext (τ, z) = y4 + 0(y3 + y2 + y) + · · · (3.36)

can be determined from (3.35) and Table 3.1 as

Zm=4
ext (τ, z) =

1

432
φ4
0,1 +

1

8
E4φ

2
−2,1φ

2
0,1 +

11

27
E6φ

3
−2,1φ0,1 +

67

144
E2

4φ
4
−2,1. (3.37)

This is an example of the N = 2 extremal elliptic genus defined11 by [GGK+08].

Definition 3.5 (N = 2 extremal elliptic genus). We define the polar region of index m ∈ Z>0 as

P(m) := {(n, r) ∈ Z2 | 0 ≤ n, 4mn < r2, 1 ≤ r ≤ m}, (3.38)

and the terms qnyr of the Fourier expansion of a function f(τ, z) such that (n, r) ∈ P(m) are
called the polar terms of index m of f .

An N = 2 extremal elliptic genus Zm
ext(τ, z) of index m or of central charge 6m is a weak

Jacobi form of weight 0 and index m such that its polar terms of index m coincide with the
polar terms of index m of the character of the Ramond vacuum representation12 of the N = 2

superconformal algebra of central charge c = 6m. Such polar terms can be explicitly calculated
as the polar terms of

(−1)m(1− q)ym
∞∏
l=1

(1− yql+1)(1− y−1ql)

(1− ql)2
. (3.39)

■

According to [GGK+08], the number of polar terms of index m exceeds the number of C-
linearly independent terms of Jweak

0,m in (3.35). Therefore, an N = 2 extremal elliptic genus
Zm

ext(τ, z) is unique if it exists. In addition, they showed that it exists only when m = 1, 2, 3, 4,

5, 7, 8, 11, 13 for m ≤ 36, and it does not exist for sufficiently large m. So they conjecture that
it exists only for the listed values of m. The N = 2 extremal elliptic genera for m = 1, 2, 3, 4

11An extremal VOA is defined in [Hoe07] as a self-dual VOA of central charge c such that its minimal non-zero
conformal weight is greater than [ c

24 ] (see also [H0̈8]). The extremal VOAs (CFTs) are studied in [Wit07] in relation
to three-dimensional gravity. Inspired by [Wit07], the N = 2 and N = 4 extremal extremal elliptic genera are
defined in [GGK+08].

12More precisely, the Ramond vacuum representation means the Ramond massless representation of conformal
weight c

24 and U(1) charge c
6 [CDD+14, §7] (which is also called the Ramond graviton representation of the same

weight and charge [Egu04]). The quantity (3.39) is obtained as the 1
2 -spectral flow of the character of the NS vacuum

representation (the NS graviton representation of conformal weight 0 and U(1) charge 0 [Egu04]). This (3.39) is the
terms of the character of the Ramond vacuum representation, containing all its polar terms.
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are [GGK+08, BDFK15]

Zm=1
ext (τ, z) = φ0,1, (3.40)

Zm=2
ext (τ, z) =

1

6
φ2
0,1 +

5

6
E4φ

2
−2,1, (3.41)

Zm=3
ext (τ, z) =

1

48
φ3
0,1 +

7

16
E4φ

2
−2,1φ0,1 +

13

24
E6φ

3
−2,1, (3.42)

Zm=4
ext (τ, z) =

1

432
φ4
0,1 +

1

8
E4φ

2
−2,1φ

2
0,1 +

11

27
E6φ

3
−2,1φ0,1 +

67

144
E2

4φ
4
−2,1. (3.43)

3.4 Elliptic Genus

Weak Jacobi forms appear in physics as the elliptic genus of N = 2 SCFT. (Be careful not to
confuse it with the extremal N = 2 elliptic genus, which was purely mathematically defined as
above.) To explain what it is, let us begin with the Witten index of a chiral N = 1 SCFT.

In the R sector of a chiral N = 1 SCFT of central charge c, there is a supercharge G0 such
that (G0)

2 = L0− c
24

(see (4.23) below). We then have, for a general state |h⟩ with L0-eigenvalue
h in the R sector,

|G0|h⟩|2 = ⟨h|(L0 −
c

24
)|h⟩ = h− c

24
, (3.44)

where G0 is a Hermitian operator. As a result, unless h = c
24

, G0|h⟩ is a non-zero state. Since
[G0, L0] = 0 and {G0, (−1)F} = 0, where (−1)F is the fermion parity operator, we can say that
G0|h⟩ is a state with the same L0-eigenvalue and opposite parity compared with |h⟩, when h ̸= c

24
.

Therefore, |h⟩ and G0|h⟩ cancel in the trace over the R sectorHR

TrHR
(−1)F qL0− c

24 , (3.45)

and only the states with h = c
24

contribute. So the quantity (3.45) is a constant. A state with
h = c

24
in the R sector is called a Ramond vacuum,13 and the constant (3.45) is counting the

number of Ramond vacua with sign (−1)F . This constant is called the Witten index. (We can
also define the Witten index for a general (not necessarily conformal) supersymmetric theory in a
similar way.)

The elliptic genus is a concept similar to the Witten index. We define the elliptic genus of an
N = (0, 1) SCFT which is non-chiral (consisting of left- and right-moving parts) as

Zell(τ) := TrH
RR̃
(−1)F+F̃ qL0− c

24 q̄L̃0− c̃
24 , (3.46)

where HRR̃ is the Hilbert space of the entire R sector, and the objects without tilde and with
tilde˜denote the objects in left- and right-moving parts respectively. The entire R sector has the
structure HRR̃ =

⊕
iHR,i ⊗ HR̃,i, and by the discussion similar to above, we can say that the

13Be careful not to confuse |0⟩R introduced in (6.20) with a Ramond vacuum. In fact, the conformal weight of
|0⟩R of the n real free chiral fermions is n

16 = c
8 , and the theory is not supersymmetric.
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sectors containing the right-moving Ramond vacua
⊕

i such that H
R̃,i

=vacHR,i⊗HR̃,i only contribute
to the trace (3.46). Therefore, the elliptic genus Zell(τ) is independent of q̄.

We regard a non-chiral N = (Nl,Nr) SCFT with Nl ≥ 0 and Nr ≥ 1 as a special case of
non-chiral N = (0, 1) SCFTs. If Nl ≥ 1, then it further follows that the elliptic genus Zell(τ) is
independent of q, and hence a constant. We may then call it the Witten index.

If Nl ≥ 2, then the quantity

Zell(τ, z) := TrH
RR̃
(−1)F+F̃yJ0qL0− c

24 q̄L̃0− c̃
24 , (3.47)

where J0 is the U(1) charge (the zero mode of J(z)) of the N = 2 superconformal algebra,14 is
also called the elliptic genus. In fact, this (3.47) is the traditional definition of the elliptic genus,
but recently, the scope of the term “elliptic genus” seems to slightly broadened so that it includes
the quantity Zell(τ) = Zell(τ, 0) in (3.46).

Moreover, for a fermionic chiral CFT, by regarding it as coupling to a trivial right-moving
Nr = 1 theory, its elliptic genus is

Zell(τ) = TrHR
(−1)F qL0− c

24 . (3.55)

If the chiral CFT hasN = 1 supersymmetry, then this is just the Witten index. IfN ≥ 2, then the
quantity

Zell(τ, z) = TrHR
(−1)FyJ0qL0− c

24 , (3.56)

is also the elliptic genus.
Let us come back to the weak Jacobi forms. We consider a non-chiral N = (2, 1) SCFT of

central charge (c, c̃) or a chiral N = 2 SCFT of central charge c, such that the phases caused by

14The N = 2 superconformal algebra of central charge c consists of the operators T (z), J(z), G+(z), G−(z)

satisfying the following OPEs:

T (z1)T (z2) ∼
c/2

(z1 − z2)4
+

2

(z1 − z2)2
T (z2) +

1

z1 − z2
∂T (z2), (3.48)

T (z1)J(z2) ∼
1

(z1 − z2)2
J(z2) +

1

z1 − z2
∂J(z2), (3.49)

T (z1)G
±(z2) ∼

3/2

(z1 − z2)2
G±(z2) +

1

z1 − z2
∂G±(z2), (3.50)

J(z1)J(z2) ∼
c/3

(z1 − z2)2
, (3.51)

J(z1)G
±(z2) ∼ ±

1

z1 − z2
G±(z2), (3.52)

G+(z1)G
−(z2) ∼

2c/3

(z1 − z2)3
+

2

(z1 − z2)2
J(z2) +

1

z1 − z2
(2T (z2) + ∂J(z2)), (3.53)

G±(z1)G
±(z2) ∼ 0. (3.54)

These operators, T (z), J(z), and G±(z) are called the energy-momentum tensor, the U(1) current, and the supercur-
rents, respectively.
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the gravitational anomaly in the modular transformations (E.1, E.2) are trivial, that is, 2(c̃− c) ≡
0 mod 24. If the U(1) charges (the J0-eigenvalues) of the states in the NS sector of the SCFT
are all integers, and c

3
is a positive integer, then the elliptic genus Zell(τ, z) in (3.47) or (3.56) is

known [KYY93] to be a weak Jacobi form of weight 0 and index c
6
. (There is also the concept of

a weak Jacobi form of half-integer index.) The transformation (3.26) follows from the modular
invariance, and the transformation (3.27) follows from the spectral flow.

We have defined the extremal N = 2 elliptic genera in Section 3.3. Constructing an SCFT
whose elliptic genus coincides with an extremal N = 2 elliptic genus is a nontrivial problem.
For example, Zm=1

ext (τ, z) is the elliptic genus of the K3 CFT (Section 7) divided by 2. Dun-
can’s module will be introduced as an N = 1 chiral SCFT in Section 6.2, but it also admits
N = 2 and N = 4 superconformal algebras, and its elliptic genus as an N = 2 theory is
Zm=2

ext (τ, z) [CDD+14]. An N = 2 chiral SCFT with elliptic genus Zm=4
ext (τ, z) is constructed

in [BDFK15] from the odd Leech lattice. There is also the concept of N = 4 extremal el-
liptic genera Zm,N=4

ext (τ, z) [GGK+08]. Duncan’s module as N = 4 theory has the elliptic
genus Zm=2,N=4

ext (τ, z). An N = 4 chiral SCFT with Zm=4,N=4
ext (τ, z) is constructed in [Har16].

See [FH17, KY23b] for more on SCFTs with extremal elliptic genera.
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4 Vertex Operator Algebras
The axiomatic definition of a VOA is somewhat technical. In many cases for physicists, it suffices
to consider the examples of VOAs introduced in the next Part II, whose constructions would be
more familiar from the viewpoint of CFTs in physics. We will not go into the proof that these
examples actually satisfy the axioms of a VOA. Even so, reviewing the definition of a VOA is
more or less helpful for understanding how VOAs mathematically formulate CFTs in physics, so
we will summarize it in this Section 4.

The historical development of the concept of VOA is summarized in [FLM88, Introduction
§III]. It developed through three stages: vertex operator, vertex algebra, and vertex operator
algebra.

Vertex operator (a historical note)
Lepowsky and Wilson constructed a certain representation of the affine Lie algebra ŝl(2,C) in

[LW78], using the operators which are now called twisted vertex operators, which was generalized
to other affine Lie algebras in [KKLW81]. Garland noticed the similarity between those operators
and the vertex operators in a physics theory called the dual resonance theory, and it was confirmed
that this resemblance can actually be made into a complete coincidence in the works by Frenkel
and Kac [FK80], and by Segal [Seg81] independently, where representations of the affine Lie
algebras were constructed using the (untwisted) vertex operators.

In [FLM84], Frenkel, Lepowsky, and Meurman constructed a representation, which we now
call the moonshine module V ♮, of a certain algebra B̂♮, an “affinization” of the Griess algebra B♮,
using vertex operators. They also showed that the monster group M acts on V ♮, and the graded
character of V ♮ is the modular j-function (without the constant term).

4.1 Vertex Algebras

Motivated by [FLM84], Borcherds [Bor86] introduced the axioms of a vertex algebra.15 Follow-
ing [Har99, §5.2], they can be summarized as follows.

Definition 4.1 (vertex algebra). A vector space V over a field K of characteristic 0 is called a
vertex algebra if it satisfies the following axioms.

(1) For any v ∈ V and any n ∈ Z, a K-linear endomorphism v(n) ∈ End(V ) is given.

We define a formal series Y (v, z) ∈ End(V )[[z, z−1]] of z, called the vertex operator cor-
responding to v, as

Y (v, z) :=
∑
n∈Z

v(n)z
−n−1. (4.1)

15Borcherds posted on MathOverflow that his definition of a vertex algebra was purely motivated by an attempt
to understand the works by Frenkel, Lepowsky, and Meurman, and he did not use any insights from field theories in
physics, simply because he was barely familiar with such topics. https://mathoverflow.net/questions/53988/what-is-
the-motivation-for-a-vertex-algebra
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The map V → End(V )[[z, z−1]]; v 7→ Y (v, z) is often called the state-field correspondence,
and we require it to be K-linear.

(2) For any v, w ∈ V , there exists n ∈ Z such that v(m)w = 0 for any m ≥ n.

(3) For any u, v, w ∈ V and m,n, q ∈ Z,∑
i≥0

(
m

i

)
(u(q+i)v)(m+n−i)w =

∑
i≥0

(−1)i
(
q

i

)
[u(m+q−i)(v(n+i)w)− (−1)qv(n+q−i)(u(m+i)w)].

(4.2)

This equation (4.2) is called the Borcherds identity (or the Jacobi identity).

(4) There is a specific element 1 ∈ V called the vacuum vector, which satisfies for any v ∈ V ,
v(−1)1 = v, and v(n)1 = 0 for any n ≥ 0.

■

Following physics convention, any element v ∈ V of a vertex algebra V is called a state, and
a vertex operator Y (v, z) a field, a current, or simply an operator. Sometimes v is also called a
current. The operator v(n) is called the n-th mode of the mode expansion of Y (v, z), or simply of
v.

The Borcherds identity (4.2) is equivalent to

z−1
0 δ

(
z1 − z2
z0

)
Y (u, z1)Y (v, z2)w − z−1

0 δ

(
z2 − z1
−z0

)
Y (v, z2)Y (u, z1)w = z−1

2 δ

(
z1 − z0
z2

)
Y (Y (u, z0)v, z2)w,

(4.3)

where

δ(z) =
∑
n∈Z

zn, (4.4)

and we break down

δ

(
z1 − z2
z0

)
=
∑
n∈Z

(
z1 − z2
z0

)n
(4.5)

into an infinite sum of the terms in the form of zi0z
j
1z
k
2 , under the definition

(a− b)n := an(1− b

a
)n :=

∞∑
i=0

(
n

i

)
an−i(−b)i for n < 0. (4.6)

In particular, (a− b)n is not equal to (−b+ a)n if n < 0, under this definition.

There are some variants of the definitions of vertex algebras. For example, [Kac98,CKLW15]
adopt the following definition. We will use16 the notation [A,B] := AB −BA.

16 [Kac98] deal with vertex superalgebras, rather than vertex algebras, throughout the entire book. The definition
of the bracket there is [A,B] := AB − (−1)|A||B|BA. See also the description of vertex superalgebras in the main
text below.
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Definition 4.2 (vertex algebra (another definition)). A vector space V over C is called a vertex
algebra if it satisfies the following axioms.

(1) For any v ∈ V and any n ∈ Z, a C-linear endomorphism v(n) ∈ End(V ) is given.

The formal series Y (v, z) :=
∑

n∈Z v(n)z
−n−1 is called the vertex operator corresponding

to v, and the state-field correspondence V → End(V )[[z, z−1]]; v 7→ Y (v, z) is required to
be a linear map.

(2) For any u, v ∈ V , there exists n ∈ Z such that u(m)v = 0 for any m ≥ n.

A formal series
∑

n∈Z anz
−n−1 ∈ End(V )[[z, z−1]] such that for any w ∈ V , anw = 0 for

sufficient large k is called a field. The vertex operators Y (v, z) are fields, and the state-field
correspondence is a linear map from V to the space of fields.

(3) For any v, w ∈ V , there exists N ∈ Z>0 such that

(z0 − z1)N [Y (v, z0), Y (w, z1)] = 0. (4.7)

This condition is called the locality.

(4) There is a specific operator T ∈ End(V ) called the infinitesimal translation operator, which
satisfies

[T, Y (v, z)] =
d

dz
Y (v, z) (4.8)

for any v ∈ V . This condition is called the translation covariance.

(5) There is a specific element 1 ∈ V called the vacuum vector, which satisfies T1 = 0,
Y (1, z) = idV , and v(−1)1 = v for any v ∈ V .

■

Even if we replace the condition v(−1)1 = v with

Y (v, z)1|z=0 = v, (4.9)

we obtain an equivalent definition [CKLW15, Remark 4.1]. We can also show [Kac98, Cor. 4.4
(c)]

[T, Y (v, z)] = Y (Tv, z) =
d

dz
Y (v, z). (4.10)

A vertex algebra of this Definition 4.2 satisfies the Borcherds identity (4.2) of Definition 4.1
[Kac98, §4.8].
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4.2 Vertex Operator Algebras

Finally, Frenkel, Lepowsky, and Meurman [FLM88] introduced the axioms of a vertex operator
algebra. Following [Har99, §5.2], they can be summarized as follows.

Definition 4.3 (vertex operator algebra). A vector space V over a field K of characteristic 0 is
called a vertex operator algebra (VOA) if it satisfies the following axioms.

(1) V is a vertex algebra in the sense of Definition 4.1, with the state-field correspondence
v 7→ Y (v, z) and the vacuum vector 1.

(2) Y (1, z) = idV .

(3) There is a specific element ω ∈ V called the Virasoro element such that if we define Ln :=

ω(n+1), that is,

Y (ω, z) =
∑
n∈Z

Lnz
−n−2, (4.11)

then {Ln}n∈Z satisfy the commutation relations of the Virasoro algebra

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm,−n, (4.12)

where c ∈ K is called the central charge.

(4) L0 is diagonalizable on V , and its eigenvalues lie in Z. So the eigenspace decomposition of
V with respect to L0 defines a Z-grading on V as V =

⊕
h∈Z

Vh.

If v ∈ Vh, then v is called a homogeneous element of (conformal) weight or (conformal)
dimension h =: wt(v).

(5) Every subspace Vh is finite-dimensional, and there is hmin ∈ Z such that Vh = 0 for any
h < hmin.

(6) For any v ∈ V ,

Y (L−1v, z) =
d

dz
Y (v, z). (4.13)

■

In addition, a VOA is said to be of CFT type [DLMM98], if hmin = 0 and V0 = K1.
Following physics convention, the operator T (z) := Y (ω, z) is called the energy-momentum

tensor. We can show wt(ω) = 2, because L0ω = L0L−21 = 2L−21 = 2ω, using the Definition
4.1 of the vacuum vector 1 and (4.12).

There are some variants of the definitions of VOAs. For example, the corresponding concept
in [Kac98, CKLW15] is a conformal vertex algebra, which is defined as a vertex algebra V in
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the sense of Definition 4.2, with a specific element ω ∈ V such that {Ln}n∈Z defined as in
(4.11) satisfy (4.12), L0 is diagonalizable on V (which defines a C-grading on V in general), and
L−1 = T (compare (4.10) and (4.13)).

Here is one caveat on the convention of the weight. From the axioms of VOAs, we can
show [Kac98, Eq. (4.9.3) and Theorem 4.10 (e)] that for a homogeneous v ∈ V ,

[L0, v(n)] = −(n+ 1− wt(v))v(n). (4.14)

Therefore, v(n) maps Vh to Vh−(n+1−wt(v)). In physics literature, however, the usual convention is

Y (v, z) =
∑
n∈Z

v(n;phys)z
−n−wt(v), (4.15)

and hence

v(n) = v(n+1−wt(v);phys). (4.16)

Some mathematics literature e.g. [Kac98, CKLW15] also introduces this convention. Then

[L0, v(n;phys)] = −nv(n;phys), (4.17)

and therefore v(n;phys) maps Vh to Vh−n.

More on vertex algebras and vertex operator algebras
If a subspace W of a vertex algebra or a VOA V forms a vertex algebra or a VOA under the

same structure as V , then W is called a vertex subalgebra or a sub-VOA of V , respectively.
A module or a representation of a vertex algebra V is a vector space M such that for any

v ∈ V , a field

Y M(v, z) =
∑
n∈Z

vM(n)z
−n−1, vM(n) ∈ End(M), (4.18)

is given, the state-field correspondence v 7→ Y M(v, z) is linear, Y M(1, z) = idM , and the
Borcherds identity (4.2) for them holds. A vertex algebra V itself is a module of V , and sometimes
called the adjoint module. A (ZN -)twisted module of a vertex operator uses End(M)[[z

1
N , z−

1
N ]]

(N ∈ Z>0) instead of End(M)[[z, z−1]]. Some literature [DL93] also introduces a concept we
may call “twisted vertex algebras”, which use End(V )[[z

1
N , z−

1
N ]] instead of End(V )[[z, z−1]].

A vertex superalgebra introduces an additional Z2-grading V = V 0̄ ⊕ V 1̄ called the parity to
a vertex algebra, and the Borcherds identity (4.3) is generalized to the super version

z−1
0 δ

(
z1 − z2
z0

)
Y (u, z1)Y (v, z2)w − (−1)|u||v|z−1

0 δ

(
z2 − z1
−z0

)
Y (v, z2)Y (u, z1)w = z−1

2 δ

(
z1 − z0
z2

)
Y (Y (u, z0)v, z2)w,

(4.19)
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where |v| := 0, 1 for v ∈ V 0̄, V 1̄, respectively. Correspondingly, the locality (4.7) is generalized
to

(z0 − z1)N(Y (v, z0)Y (w, z1)− (−1)|v||w|Y (w, z1)Y (v, z0)) = 0. (4.20)

[DL93] further introduces generalized vertex algebras, which subsume both twisted vertex alge-
bras and vertex superalgebras as special cases.

A vertex operator superalgebra (VOSA) is a VOA with the parity Z2-grading V = V 0̄ ⊕ V 1̄

making it a vertex superalgebra, and the weight 1
2
Z-grading V =

⊕
h∈ 1

2
Z
Vh instead of the Z-grading.

Sometimes V 0̄ =
⊕
h∈Z

Vh and V 1̄ =
⊕

h∈Z+ 1
2

Vh are further required [DMC14, §2.1]. Despite of its

name “super,” a VOSA just describes a fermionic CFT in physics, not necessarily with a super-
symmetry. For the description of SCFT in physics, we introduce the following structures.

An N = 1 vertex operator superalgebra requires the existence of a specific element τ ∈ V 1̄
3
2

such that if we define Gr := τ(r+ 1
2
), that is,

Y (τ, z) =
∑
r∈Z+ 1

2

Grz
−r− 3

2 , (4.21)

then {Gr}r∈Z+ 1
2

satisfy the N = 1 superconformal algebra

[Lm, Gr] =
(1
2
m− r

)
Gm+r, (4.22)

{Gr, Gs} = 2Lr+s +
c

3

(
r2 − 1

4

)
δr,−s, (4.23)

together with (4.12). This element τ or its operator G(z) := Y (τ, z) is called the supercurrent.
N = 2 and N = 4 vertex operator superalgebras are also defined in a similar way, by requiring
the existence of elements whose corresponding fields satisfy the N = 2 and N = 4 superconfor-
mal algebras, respectively.

As for more details on these definitions, see for example [DL93,Kac98,FBZ04] and references
in [DMC14, §2.1].

VOAs formulate CFTs from the viewpoint of state-field correspondence, while there is another
mathematical formulation of CFTs, called local conformal nets, which focuses on algebras of
local operators. These two formulations are useful in different situations, and the translation
between them is one of the research topics in the field of operator algebras. See for example
[CKLW15, Kaw15, Kaw17].
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Part II

Review of Moonshine Phenomena
This Part II is a review of moonshine phenomena and an introduction to important examples of
VOAs. The most classical example of moonshine phenomena is the monstrous moonshine, and its
underlying object, the monster VOA, is constructed as the Z2-orbifold of the Leech lattice VOA.
So, in Section 5, after the review of the monstrous moonshine, we will introduce the general
construction of lattice VOAs. Another well-established moonshine phenomenon is the Conway
moonshine. In Section 6, we will review that the Conway moonshine module, also known as
Duncan’s module, is constructed from a Clifford module VOSA, which describes the CFT of free
fermions. In the last Section 7, we will review a relatively new and notable example of moonshine
phenomena, the K3 Mathieu moonshine, whose mysterious nature is not fully understood yet.

5 Monstrous Moonshine and Lattice VOA
The monstrous moonshine is the first discovered example of a moonshine phenomenon, and the
origin of this research field. As we will review in Section 5.1, it was observed as an empirical
relationship between the monster group M and the modular j-function j(τ), and theoretically ex-
plained by the existence of an underlying VOA called the monster VOA V ♮. The monster VOA V ♮

is the Z2-orbifold of the Leech lattice VOA. So we will review the general construction of lattice
VOAs in Section 5.2, and their Z2-orbifolds in Section 5.3. The structures of the automorphism
groups of these theories are also described.

5.1 Monstrous Moonshine

In 1978 and 1979, McKay and Thompson [Tho79b,McK01] observed that the first several coeffi-
cients (except for the constant term) of the modular j-function

j(τ) = q−1 + 744 + 196884q + · · · (5.1)

=
∞∑

i=−1

ciq
i, (5.2)

can be written as simple sums of irreducible representation dimensions of the monster group M
as follows. The irreducible representation dimensions of M are, from the smallest one,

i 1 2 3 4 5 6 7 · · ·
χi(1M) 1 196883 21296876 842609326 18538750076 19360062527 293553734298 · · ·

(5.3)
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where χi denotes the i-th irreducible character of M. The coefficients of the modular j-function
are then

c1 = 196884 = χ1(1) + χ2(1), (5.4)

c2 = 21493760 = χ1(1) + χ2(1) + χ3(1), (5.5)

c3 = 864299970 = 2χ1(1) + 2χ2(1) + χ3(1) + χ4(1), (5.6)

c4 = 20245856256 = 3χ1(1) + 3χ2(1) + χ3(1) + 2χ4(1) + χ5(1) (5.7)

= 2χ1(1) + 3χ2(1) + 2χ3(1) + χ4(1) + χ6(1), (5.8)

c5 = 333202640600 = 4χ1(1) + 5χ2(1) + 3χ3(1) + 2χ4(1) + χ5(1) + χ6(1) + χ7(1), (5.9)
...

The constant term of the modular j-function is not important in the sense that, even if we
change it, the key property of the modular j-function that it is the generator of the rational func-
tion field C(j) of the modular functions of weight 0 (see Thm. 3.2) does not change. So they
conjectured that there exists a graded vector space V =

⊕∞
i=−1 Vi such that it is a representa-

tion of the monster group M, and its graded character of the identity element 1M is the modular
j-function without the constant term

J(τ) := j(τ)− 744. (5.10)

In addition, this graded vector space V must have some nice property; otherwise, we can easily
construct it by just stacking the trivial representation χ1. So they focused on the graded characters

Jg(τ) :=
∞∑

i=−1

TrVi(g)q
i (5.11)

of the elements g ∈ M other than the identity 1M. This character Jg(τ) is called the McKay–
Thompson series associated with g ∈M.

Recall (Section 3.2) that J1M(τ) = J(τ) is the generator of the rational function field C(j) of
the modular functions of weight 0. Such a modular function f : H → C is invariant under the
action of the modular group SL(2,Z), so it is well-defined as a function f : H/SL(2,Z) → C
on the quotient space H/SL(2,Z). It is known that the one-point compactification (the compact
space made by adding the point at infinity) of H/SL(2,Z), denoted by (H/SL(2,Z))∗, is topo-
logically equivalent to a Riemann sphere, which is a surface of genus 0. Pushing forward this
observation (and an observation17 by Ogg [Ogg75]), Thompson proposed the following conjec-
ture in [Tho79a]: for each element g ∈ M, there exists a subgroup Γg of the modular group
SL(2,Z) (more precisely, a congruence subgroup) such that (H/Γg)∗ is a genus-zero surface, and

17In 1975, Ogg already observed that a prime number p divides the order |M| of the monster group if and only if

(H/Γ0(p)
+)∗ has genus 0, where Γ0(p)

+ = ⟨Γ0(p),
1√
p

(
0 −1
p 0

)
⟩. This is an unofficial beginning of the monstrous

moonshine [Gan06a].
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Jg(τ) is the generator of the rational function field of the functions (H/Γg)∗ → C over C. This is
the McKay–Thompson conjecture.

The McKay–Thompson conjecture was proven through the following progression. In [CN79],
Conway and Norton proposed the conjectural forms of Γg and Jg(τ) for each element g ∈M. This
is called the Conway–Norton conjecture, or the monstrous moonshine conjecture. In addition,
they also showed that these conjectural Γg and Jg(τ) satisfy that (H/Γg)∗ has genus 0 and Jg(τ)
generates the rational function field of the functions (H/Γg)∗ → C. Frenkel, Lepowsky, and
Meurman constructed a representation V ♮ of the monster group M whose graded character is J(τ)
in [FLM84], and clarified its VOA structure and showed that its automorphism group Aut(V ♮) is
precisely the monster group M in [FLM88]. Finally, Borcherds showed in [Bor92] that the graded
character of g ∈M on V ♮ coincides with the conjectured Jg(τ) by the Conway–Norton conjecture,
for which he was awarded the Fields Medal.

The M-module V ♮ constructed in [FLM88] is called the monster VOA or the moonshine mod-
ule. The monster VOA V ♮ is constructed as the Z2-orbifold of the Leech lattice VOA VΛ24 , the
details of which are reviewed in the following Sections 5.2 and 5.3. In the language of physics, V ♮

is a chiral bosonic CFT of central charge 24, having the partition function J(τ) and the symmetry
M. Let us briefly review why this is the case.

In general, we can construct a chiral bosonic modular-invariant lattice CFT VL from a Eu-
clidean even self-dual lattice L of rank n ≡ 0 mod 24. Such a lattice CFT VL has central charge
n, and its partition function is

Z(VL)(τ) := TrVL [q
L0− c

24 ] (5.12)

=
ΘL(τ)

η(τ)n
. (5.13)

For this partition function Z(VL)(τ) to start with the term q−1, we should choose n = 24. So the
lattice must be an even self-dual lattice of rank 24, that is, a Niemeier lattice.

Now that Z(VL)(τ) is modular invariant (a modular function of weight 0) starting with the term
q−1, it must be in the form of J(τ) + constant, and in fact, we have

Z(VL)(τ) = J(τ) + 24 + |L1|. (5.14)

Here, |L1| is the number of lattice vectors with squared length 2 (as defined in (2.41)), and hence
|L1| = 0 for the Leech lattice L = Λ24. In addition, 24 is coming from the states αi−1|0⟩ (i =
1, . . . , 24) of conformal weight (L0-eigenvalue) 1, and these states have odd parity under the Z2

symmetry k 7→ −k of the lattice L. Therefore, these 24 states are eliminated by taking the
Z2-orbifold, which retains the Z2-invariant states. As a result, the partition function of the Z2-
orbifold of the Leech lattice CFT VΛ24 coincides with the modular j-function without the constant
term J(τ).

The proof of Aut(V ♮) = M by [FLM88] can be outlined as follows. As mentioned in Section
2.4, the monster group M is generated by a subgroup C(Λ24) = 21+24.Co1 and a specific order-2
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element σ. Recall that the isometry group of the Leech lattice Λ24 is the Conway group Co0.
Before taking the Z2-orbifold, the automorphism group Aut(VΛ24) of the Leech lattice VOA is
a group extension 224.Co0 of Co0 (Section 5.2.3). When we construct the Z2-orbifold V ♮, we
add the twisted sector (VΛ24)tw as VΛ24 ⊕ (VΛ24)tw, and project them onto the Z2-invariant states
(VΛ24)

0⊕(VΛ24)
0
tw, which is V ♮ (Section 5.3.1). The addition of the twisted sector makes the group

224.Co0 acting on VΛ24 enlarge to 21+24.Co0 acting on VΛ24 ⊕ (VΛ24)tw, and the projection makes
21+24.Co0 into its Z2-quotient C(Λ24) = 21+24.Co1 (Section 5.3.2).

In this way, the subgroup C(Λ24) acts on the monster VOA V ♮ naturally, but the construction
of the order-2 element σ is quite nontrivial. While C(Λ24) acts on the untwisted sector (VΛ24)

0 and
the twisted sector (VΛ24)

0
tw separately, σ ∈ Aut(V ♮) was constructed as an automorphism mixing

these two sectors, and called the triality operator in [FLM88]. Its construction was revisited
by [DGM90a, DGM94], and explained in relation to an isomorphism between two Z2-orbifolds
by different kinds of Z2 symmetries (Section 5.3.3). Finally, by showing that M generated by
C(Λ24) and σ is the whole automorphism group Aut(V ♮), we have Aut(V ♮) ∼= M. We also note
that another simple construction of V ♮ and proof of Aut(V ♮) ∼= M were provided by Miyamoto
in [Miy04].

Before proceeding, we remark that the automorphism group Aut(V ) of a VOA V preserves
the Virasoro algebra (4.12) of V by its definition, so we should be able to decompose the partition
function J(τ) of V ♮ simultaneously into the characters of the monster group M and the characters
of the Virasoro algebra. The irreducible character18 chh(τ) of the Virasoro algebra of highest
weight h and central charge c = 24 is

ch0(τ) =
q1/24

η(q)
(q−1 − 1), (5.15)

chh(τ) =
q1/24

η(q)
qh−1 (h ∈ Z>0). (5.16)

Here, we have

q1/24

η(q)
=

1∏∞
m=1(1− qm)

=
∞∑
N=0

p(N)qN (5.17)

= 1 + q + 2q2 + 3q3 + 5q4 + 7q5 + 11q6 · · · , (5.18)

18We can generate a module Vh of the Virasoro algebra from the highest weight state |h⟩ (a state defined as
L0|h⟩ = h|h⟩ and Lm|h⟩ = 0 for any m > 0) as Vh := SpanC{L−m1

· · ·L−ml
|h⟩ | m1, . . . ,ml ∈ Z>0}. Since the

state L−m1
· · ·L−ml

|h⟩ has L0-eigenvalue m1 + · · · +ml + h, the character of this module Vh is TrVh
[qL0− c

24 ] =

qh−
c
24

∑∞
N=0 p(N)qN = q1/24

η(q) q
h− c

24 , using (5.17). However, this module Vh is not necessarily irreducible. When
h = 0, the state L−1|0⟩ satisfies the defining properties of the highest weight state with h = 1 (for example,
L1(L−1|0⟩) = (2L0−L−1L1)|0⟩ = 0), so the module Vh=0 contains the submodule Vh=1. Therefore, the irreducible
module of highest weight 0 has the character q1/24

η(q) q
− c

24 (1 − q). Whether the module Vh with h > 0 is irreducible
or not depends on the values of weight h and central charge c, but for c > 1, it is known to be irreducible. See for
example [DFMS97, Ch. 7], [ES15, Ch. 2] for more details.
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where p(N) denotes the number of the partitions of the integerN (the partition function in number
theory). Therefore, J(τ) is decomposed as (note that chh(τ) starts with the term qh−1)

J(τ) =
∞∑

i=−1

c′ichi+1(τ), (5.19)

where c′0 = 0 and

c′−1 = χ1(1), (5.20)

c′1 = χ2(1), (5.21)

c′2 = χ3(1), (5.22)

c′3 = χ4(1), (5.23)

c′4 = χ6(1), (5.24)

c′5 = χ5(1) + χ7(τ), (5.25)
...

We can see that the same representation χi of M appearing in the different coefficients ci (5.4)–
(5.9) are bundled into the representation of the Virasoro algebra, and the appearance of the irre-
ducible representation dimensions of M becomes simple.

Lastly, we briefly mention a generalization of the monstrous moonshine. In the language
of physics, the McKay–Thompson series (5.11) is an M-twisted partition function of V ♮ with a
twisted boundary condition in the temporal direction. From the perspective of the general theory
of orbifolds (Section F.2), it is also natural to consider the twisted partition functions with twisted
boundary conditions in the spatial direction, or both spatial and temporal directions. (We remark
that the temporal and spatial twists are referred to as twining and twisted, respectively, in the ter-
minology of [GHV10a, GPRV12]. In physics literature, both of them are usually called twisted.)
Moonshine conjectures related to these twisted partitions were proposed by Norton in [Nor87],
by generalizing the work by Queen [Que81], and called the generalized moonshine conjecture.
After many steps by mathematicians (see for example [Car17]), the final step of the proof of this
generalized moonshine conjecture was announced in [Car12]. For more on monstrous moonshine
and its recent developments, see for example [Har99, Gan06a, Gan06b, DGO14, HHP22] and ref-
erences therein.

5.2 Lattice VOA

One typical construction of a VOA uses a lattice as an ingredient, and the resulting VOA is called a
lattice VOA. Before getting into its mathematical description, we first present a brief explanation
in the language of physics in Section 5.2.1. Then we see the construction of a lattice VOA in
Section 5.2.2. We also describe the automorphism group of the lattice VOA in Section 5.2.3,
because it plays an important role in moonshine phenomena.

44



5.2.1 Physical Description

For a given lattice L, we can consider a CFT having L as a momentum lattice. If the symmetric
bilinear form of the lattice is of signature (r, s), and if it is diagonalized with respect to a certain
basis e1, . . . , er, er+1, . . . , er+s as

|k|2 = |k+|2+ − |k−|2− for k = k+ + k− =
r∑
i=1

kiei +
r+s∑
i=r+1

kiei ∈ L, (5.26)

where | • |2+ and | • |2− are some positive norms, then the partition function of the lattice CFT is

Z(VL)(τ, τ̄) =
1

η(τ)rη(τ)s
ΘL(τ, τ̄) (5.27)

=
1

η(τ)rη(τ)s

∑
k∈L

q
1
2
|k+|2+ q̄

1
2
|k−|2− , (5.28)

and the central charge of the lattice CFT is (c, c̃) = (r, s). If the lattice L is even self-dual,
then the partition function Z(VL)(τ, τ̄) is bosonic and modular invariant19 up to the phases (E.1,
E.2) from the gravitational anomaly. An even self-dual lattice of signature (r, s) exists if and
only if r − s ≡ 0 mod 8 [Ser73, Ch. V], so the phases from the gravitational anomaly vanish
if the lattice L further satisfies r − s ≡ 0 mod 24, and then the partition function Z(VL)(τ, τ̄) is
completely modular invariant. If the lattice is Euclidean, then the resulting CFT is chiral. See for
example [ES15, §5.5] for more details.

We will mainly deal with the chiral cases in these notes. The states of a chiral lattice CFT are
C-linear combinations of the states in the form of

αi1−m1
· · ·αil−ml

|k⟩, (5.29)

where |k⟩ is the state with momentum vector k ∈ L, m1, . . . ,ml ∈ Z>0, and α1
m, . . . , α

n
m (m ∈

Z>0) are the creation operators corresponding to an Z-basis e1, . . . , en of L. Together with the
annihilation operators αim (m ∈ Z<0) and the momentum operators αi0 such that the state (5.29)
is an eigenstate of αi0 with eigenvalue ⟨ei, k⟩, the operators {αim}

i=1,...,n
m∈Z satisfy the commutation

relations [αim, α
i′

m′ ] = ⟨ei, ei′⟩mδm+m′,0. The conformal weight of the state (5.29) is 1
2
|k|2 +

m1 + · · · + ml. We also often use the creation-annihilation operators α1
m, . . . , α

n
m with respect

to an orthonormal basis e1, . . . , en of Rn where the lattice L is embedded. They are related to
α1
m, . . . , α

n
m under a proper R-linear transformation, and their commutation relation is of course

[αim, α
i′

m′ ] = δi,i′mδm+m′,0.
If we introduce the chiral bosons X(z) = (X i(z))i=1,...,n which satisfy the OPE

X i(z1) ·Xj(z2) ∼ −δi,j log(z1 − z2), (5.30)

19This follows from the formula (see e.g. [ES15, Eq. (5.166)]) of the modular S transformation ΘL(− 1
τ ,−

1
τ̄ ) =

1
detG (−

√
−1τ)r/2(

√
−1τ̄)s/2ΘL∗(τ, τ̄), where G is the Gram matrix of L, and L∗ is the dual lattice of L. The

modular T transformation of ΘL(τ, τ) is easy.
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and whose mode expansions are given as (see e.g. [ES15, §1.8.1])

∂X i(z) = −
√
−1

∞∑
m=−∞

αim
zm+1

, (5.31)

then we can describe the state-operator correspondence as (see e.g. [Pol07, §2.8])

αi−m|0⟩ ←→
√
−1

(m− 1)!
∂mX i(z) (m ≥ 1), (5.32)

|k⟩ ←→ Vk(z) ∝ : e
√
−1k·X(z) :, (5.33)

where ∝ denotes that we ignore the cocycle factor.
The details of the cocycle factors are described in Appendix C, but here we give a brief ex-

position. To realize the appropriate commutation relations of the vertex operators Vk(z) ∝ :

e
√
−1k·X(z) : , in accordance with whether Vk(z) is bosonic (the weight 1

2
|k|2 is an integer) or

fermionic (a half-integer), we have to introduce a correction factor ck(p) satisfying

ck(p+ k′)ck′(p) = (−1)k·k′+|k|2|k′|2ck′(p+ k)ck(p) = ε(k, k′)ck+k′(p) (5.34)

to modify the commutation relations of : e
√
−1k·X(z) :’s. As a result, an additional factor called a

cocycle factor ε : L × L → {±1} which satisfies the 2-cocycle condition appears in the OPE of
the vertex operators Vk(z) = : e

√
−1k·X(z) : ck(p) as

Vk(z1) · Vk′(z2) = (−1)|k|2|k′|2Vk′(z2) · Vk(z1) ∼ ε(k, k′)(z1 − z2)k·k
′
Vk+k′(z2), (5.35)

where we dropped O((z1 − z2)k·k
′+1) terms in OPE.

5.2.2 Construction of Lattice VOA

The foundational literature on lattice VOAs is [FLM88], and [Kac98, §§5.4-5.5] also provides a
detailed description. [DN99,Lam20] contain readable summaries, and we will follow them. These
references except for [Kac98] deal with ordinary lattice VOAs constructed from even lattices, but
we also consider odd lattices in these notes, so the resulting VOA can be a VOSA to be precise
(see e.g. [DL93, Remark 12.38]). However, this distinction is not important for our purposes,
so we will be unconcerned about that point. In these notes, we always assume that lattices are
integral. We also always assume that lattices are Euclidean (positive-definite), and hence the
resulting lattice VOA formulates a chiral CFT in the language of physics. As for Lorentzian
lattice VOAs or more general VOAs to describe non-chiral CFTs (full CFTs in other words),
see [HK05, Mor20, SS23].

The first step to constructing the lattice VOA VL from a given lattice L is to furnish the lattice
L with a cocycle factor ε̂. We will eventually use the specific cocycle factor ε required by physics
as in (5.34), but for a moment, let ε̂ : L× L→ Z2 denote a general 2-cocycle to keep generality.
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We will use some basic concepts of group extensions throughout the rest of this Section 5. See
Appendix A for some basic facts on group extensions, although the description in this Section 5
is intended to be as self-contained as possible.

Let L̂ be the central extension20 of the lattice (as a free abelian group) L by Z2 = ⟨κ | κ2 = 1⟩

1→ Z2 → L̂
¯→ L→ 0, (5.36)

specified by a 2-cocycle ε̂ : L× L→ Z2. In other words, L̂ is Z2 × L as a set, and if we write its
element as κmek (κm ∈ Z2, k ∈ L), then L̂ is a group specified by the multiplication

κmek · κm′
ek

′
= ε̂(k, k′)κm+m′

ek+k
′
. (5.37)

So, ek ∈ L̂ and ε̂ correspond to ck(p) and ε in (5.34) respectively, under κ = e
√
−1π.

Here is one comment on the normalization of the 2-cocycle. It follows from the 2-cocycle
condition

ε̂(k, k′)ε̂(k + k′, k′′) = ε̂(k, k′ + k′′)ε̂(k′, k′′), (5.38)

that any 2-cocycle ε̂ : L× L→ Z2 satisfies

ε̂(k, 0) = ε̂(0, k) = ε̂(0, 0) for any k ∈ L. (5.39)

Furthermore, it is known that there exists a 2-cocycle ε̂ satisfying the normalization condition

ε̂(0, 0) = κ0, (5.40)

in any cohomology class in H2(L,Z2), and it defines an equivalent extension L̂ to any 2-cocycle
in the same cohomology class (see the last paragraph of Section A.1). Therefore, we will always
assume that ε̂ is a normalized one as in (5.40), without loss of generality. Then, we can observe
that the multiplication of L̂ is well-behaved in the sense that

κme0 · κm′
ek = κm+m′

ek, (5.41)

κmek · κm′
e0 = κm+m′

ek, (5.42)

and hence there is no confusion if we just write κm instead of κme0. We will also just write ek

instead of κ0ek.
Now L̂ has the multiplication structure reflecting the OPE (5.34), but not yet the structure of

a C-vector space of states. So we would like to consider the group algebra C[L̂] of L̂ over C,
but we have to identify κ with e

√
−1π ∈ C, in order to properly make κmek and κm

′
ek be C-

linearly dependent. This is mathematically done as follows. We consider a representation C of
the subgroup Z2 of L̂, where the generator κ acts on C as multiplication by e

√
−1π. We define

20 More generally, [FLM88] deals with the central extension L̂ of L by Zs = ⟨κ | κs = 1⟩. Furthermore, we would
like to consider the central extension by U(1) ∼= R/2Z = ⟨κ⟩R/⟨κ⟩2Z later. Therefore, the discussions below avoid
using special properties for Z2, such as ε̂(k, k′)−1 = ε̂(k, k′).
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the L̂-module C{L} as the induced representation of L̂ from it, or equivalently, the extension of
scalars of the module C from C[Z2] to C[L̂]:

C{L} := IndL̂Z2 or U(1)C = C[L̂]⊗C[Z2] C. (5.43)

Roughly speaking, C{L} is just a group algebra C[L̂] with κm · ek = e
√
−1πmek.

The second step is to introduce the creation-annihilation operators. Let h = L ⊗Z C be the
abelian Lie algebra, and ĥ = h⊗ C[t, t−1]⊕ CK be its affine Lie algebra with the Lie bracket

[α(m), α′(m′)] = ⟨α, α′⟩mδm+m′,0K, (5.44)

where α(m) := α ⊗ tm with α ∈ h, m ∈ Z, and the symmetric bilinear form ⟨−,−⟩ on L is
extended to h by C-linearity.

LetU(ĥ) be the universal enveloping algebra of ĥ (the algebra where α(m)α′(m′)−α′(m′)α(m) =

[α(m), α′(m′)] holds), and define the ĥ-module M(1) as

M(1) := U(ĥ)⊗h⊗C[t]⊕CK C, (5.45)

where h ⊗ C[t] acts on C as α(m) · C = 0 (m ≥ 0),21 and K acts on C as multiplication by 1.
As a vector space, M(1) is isomorphic to U(ĥ−), which is the universal enveloping algebra of the
abelian subalgebra

ĥ− := h⊗ t−1C[t−1], (5.46)

of ĥ.
Finally, the lattice VOA VL is defined as the C vector space

VL :=M(1)⊗C C{L}, (5.47)

with the VOA structure such as the vacuum vector and the state-field correspondence, which we
do not write down here. Any element of VL therefore can be written as a C-linear combination of
elements in the form of

α1(−m1) · · ·αl(−ml)e
k, (5.48)

where α1, . . . , αl ∈ h = L⊗Z C, m1, . . . ,ml ∈ Z>0, and k ∈ L.
Let e1, . . . , en be an integral basis of L. The element ei1(−m1) · · · eil(−ml)e

k of VL is usually
denoted by αi1−m1

· · ·αil−ml
|k⟩ in physics literature, where the commutation relation of the creation-

annihilation operators αim is [αim, α
i′

m′ ] = ⟨ei, ei′⟩mδm+m′,0. We also often use the creation-
annihilation operators αim := ei(m) (m ̸= 0; see footnote 21) with respect to an orthonormal

21 Here, α(0) also annihilates the states, unlike the momentum operators usually denoted by αi
0 in physics as in

the previous Section 5.2.1. This is just a problem of conventions.
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basis e1, . . . , en of Rn where the lattice L is embedded. Their commutation relation is of course
[αim, α

i′

m′ ] = δi,i′mδm+m′,0.
The vacuum vector 1 of the lattice VOA VL is 1 = e0. The Virasoro element ω is given by

ω = 1
2

∑
i ei(−1)21, and the corresponding operator is T (z) = −1

2

∑
i : (∂X

i(z))2 :. Then the
weight of the element (5.48), namely the eigenvalue with respect to L0, can be calculated as

wt(α1(−m1) · · ·αl(−ml)e
k) = m1 + · · ·+ml +

1

2
|k|2, (5.49)

and this weight introduces the grading of the VOA VL.

5.2.3 Automorphism Group of Lattice VOA

The group O(L̂)
Since the lattice VOA VL is built on the central extension L̂ of the lattice L, before directly

getting into the automorphism group of VL, it is useful to first investigate the automorphism group
of L̂.

We define the commutator map ĉ : L× L→ Z2 by

ĉ(k, k′) := ε̂(k, k′)ε̂(k′, k)−1. (5.50)

If ε̂ here is the specific one ε in (5.34), then it immediately follows from (5.34) that ε must satisfy

ε(k, k′) = (−1)k·k′+|k|2|k′|2ε(k′, k), (5.51)

so we have ĉ(k, k′) = κk·k
′+|k|2|k′|2 |κ=−1.

Forgetting the symmetric bilinear form on L, for a moment, we focus on the automorphism
group Aut(L) of just a free abelian group L, instead of the isometry group O(L) of the lattice L.
The proposition [FLM88, Prop. 5.4.1] states that

1→ Hom(L,Z2) →̃ Aut(L̂, κ)
¯→ Aut(L, ĉ)→ 1 (5.52)

is exact. (The proof is also reviewed in Appendix A.4.) The details of (5.52) are as follows.
Hom(L,Z2)→̃Aut(L̂, κ) maps η ∈ Hom(L,Z2) to

η̃ : L̂→ L̂ (5.53)

κmek 7→ η(k)κmek. (5.54)

Note that η ∈ Hom(L,Z2) is determined only from the values of η(e1), . . . , η(en), where e1, . . . , en
is a basis of L, and hence

Hom(L,Z2) ∼= (Z2)
n. (5.55)

Aut(L̂, κ) is defined as

Aut(L̂, κ) := {f ∈ Aut(L̂) | f(κ) = κ}, (5.56)
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and Aut(L, ĉ) is defined as

Aut(L, ĉ) := {g ∈ Aut(L) | ĉ(g(k), g(k′)) = ĉ(k, k′)}. (5.57)

Aut(L̂, κ)→̄Aut(L, ĉ) maps f ∈ Aut(L̂) to

f̄ : L→ L (5.58)

k 7→ f(ek), (5.59)

where the natural projection L̂→̄L of (5.36) is used.
Since 1 and κ are the only elements of finite order in L̂, it follows that any f ∈ Aut(L̂)

satisfies f(κ) = κ, and hence Aut(L̂, κ) reduces to Aut(L̂) in the case at hand. However, this is
the special property for the extension by Zs=2. If we consider a more general extension, say by
Zs>2, then we cannot reduce Aut(L̂, κ) to Aut(L̂) (see footnote 20).

Let us recall that L is a lattice, more than just a free abelian group, and move on to the isometry
group O(L) of the lattice from the automorphism group Aut(L) of the free abelian group. If the
commutator map ĉ depends only on the bilinear form of the lattice L, say ĉ(k, k′) = κk·k

′+|k|2|k′|2 ,
then the isometry group O(L) is a subgroup of Aut(L, ĉ) defined in (5.57). In addition, if we
define

O(L̂) := {f ∈ Aut(L̂, κ) | f̄ ∈ O(L)}, (5.60)

then we obtain the exact sequence [FLM88, Prop. 6.4.1]

1→ Hom(L,Z2)
˜→ O(L̂)

¯→ O(L)→ 1 (5.61)

from (5.52).

Remark 5.1. For any g ∈ O(L), it is known that there exists a lift ĝ ∈ O(L̂) of g such that
ĝ(ek) = ek for any k ∈ L fixed by g as g(k) = k [Lep85, §5]. Such lift ĝ is called the standard
lift of g, and is sometimes of use in research. See for example [Bor92, Lemma 12.1], [Mö16,
§5.3], [vEMS20, §7] for some properties of the standard lift. (Remark ends.)

The automorphism group Aut(VL)

Following [FLM88, §8.10] or [DN99, §2.3], the definition of an automorphism of a VOA is
as follows.

Definition 5.2 (automorphism of a VOA). An automorphism of a VOA V over C is a map F :

V → V such that

(1) it is a C-linear automorphism on the C-vector space V .
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(2) it preserves all the products.22 More precisely, F (v(m)(v
′)) = (F (v))(m)(F (v

′)) for any
v, v′ ∈ V and m ∈ Z. Or equivalently, F ◦ Y (v, z) ◦ F−1 = Y (F (v), z) for any v ∈ V .

(3) it preserves the Virasoro element F (ω) = ω, and hence preserves the grading of V .

■

Any element f of O(L̂) induces an automorphism F of a lattice VOA VL, which acts on the
state (5.29) as

F (α1(−m1) · · ·αl(−ml)e
k) = f̄(α1)(−m1) · · · f̄(αl)(−ml)f(e

k), (5.63)

where f̄ ∈ O(L) was defined in (5.59) and extended by C-linearity here. This preserves the group
structure of O(L̂), and hence O(L̂) ∼= (Z2)

n.O(L) can be regarded as a subgroup of the automor-
phism group Aut(VL) of the lattice VOA VL. The whole Aut(VL) is determined in [DN99] as
follows.

Theorem 5.3 ([DN99, Theorem 2.1]). For a positive-definite even lattice L, the automorphism
group Aut(VL) is generated by O(L̂) and N defined as

N := {exp(v(0)) | v ∈ VL,wt(v) = 1}. (5.64)

In short,

Aut(VL) = N ·O(L̂). (5.65)

N is a normal subgroup of Aut(VL), and N ∩O(L̂) contains Hom(L,Z2) ⊂ O(L̂).

Remark 5.4. We will not need the details of the subgroup N ⊂ Aut(VL) below, but here we
provide some explanation in this Remark.

An (even) derivation23 of a VOA V is a linear endomorphism D : V → V such that

• D(v(m)(v
′)) = (D(v))(m)(v

′) + v(m)(D(v′)) for any v, v′ ∈ V and m ∈ Z,

• D(ω) = 0.

22A vertex algebra V in the sense of Definition 4.2 satisfies the Borcherds OPE formula [Kac98, Thm. 4.6]

Y (v, z1)Y (w, z2) =

∞∑
n=0

Y (v(n)w, z2)

(z1 − z2)n+1
+ : Y (v, z1)Y (w, z2) : , (5.62)

in the domain |z1| > |z2| for any v, w ∈ V . In view of this, the condition (2) of Definition 5.2 can be phrased as
“preserve OPE”.

23An odd derivation [Kac98, §4.3] requires D(v(m)(v
′)) = (D(v))(m)(v

′) + (−1)|v|v(m)(D(v′)) instead of the
first equation, but we do not use it in these notes.
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Combining these equations and L0 = ω(1), we can see D(L0v) = L0(Dv), and hence a derivation
preserves the grading of V . We can easily see that exp(D) is an automorphism of V .

For any element u ∈ V of weight 1, u(0) is a derivation as follows. The first equation fol-
lows from [u(0), v(m)] = (u(0)v)(m) [Kac98, Eq. (4.6.3)]. To see the second equation, we have
[u(0), Lm′ ] = 0 from [u(m), Lm′ ] = (m − (wt(u) − 1)m′)u(m+m′) [Kac98, Cor. 4.10 (iii)], and
hence u(0)(ω) = u(0)L−21 = L−2u(0)1 = 0, using the Definition 4.1 of the vacuum vector 1.

Therefore, exp(u(0)) with wt(u) = 1 is an automorphism of V , called an inner automorphism
in [Kac98, Remark 4.9c]. So

N := {exp(u(0)) | u ∈ V,wt(u) = 1} (5.66)

is indeed a subgroup of Aut(VL). Furthermore,N is a normal subgroup, because any F ∈ Aut(V )

satisfies F ◦ exp(u(0)) ◦ F−1 = exp((F (u))(0)) and wt(F (u)) = wt(u) = 1.
For example, in the case of a lattice VOA VL, if we take the weight-1 element u as ei(−1)e0, or

αi−1|0⟩ in physics notation, then u(0) is the momentum operator αi0 described in Section 5.2.1 (see
also footnote 21), which corresponds to ⟨ei,−⟩ ∈ Hom(L,R). Recalling ω = 1

2

∑
i ei(−1)2e0,

we can explicitly see that αi0(ω) = 0. We can also see that exp(tαi0) ∈ N is in Hom(L,Z2) for
appropriate t ∈ C, and this is the basic argument to show that N ∩O(L̂) contains Hom(L,Z2) ⊂
O(L̂).

If the lattice L contains a vector k of squared length 2, then ek ∈ VL is also a weight-1 element.
On the other hand, if L does not have a vector of squared length 2, then N ∩O(L̂) coincides with
Hom(L,Z2) ⊂ O(L̂), and Aut(VL) = N.O(L) [Lam20, Remark 2.3]. The Leech lattice Λ24 is
such an example. (Remark ends.)

As a study of the structure of Aut(VL), we can consider the following question: does the
isometry group O(L) of the lattice L lift to a subgroup of the automorphism group Aut(VL) of
the lattice VOA VL? Now that we have seen that O(L̂) is a subgroup of Aut(VL), this question is
equivalent to whether the group extension (5.61) splits or not. This is the main subject of [Oka24].

5.3 Z2-Orbifold of Lattice VOA

When a CFT T has a finite group symmetry G ⊂ Aut(T ) and it is non-anomalous, then we
can construct a new CFT T /G consisting of G-invariant states, which is called the orbifold of T
by G. The monster VOA V ♮ is the orbifold of the Leech lattice VOA VΛ24 by the reflection Z2

symmetry X(z) 7→ −X(z). So we review the orbifold ṼL of a lattice VOA VL by the reflection
Z2 symmetry in Section 5.3.1, and the automorphisms of the resulting theory ṼL in Section 5.3.2.
A lattice VOA has another Z2 symmetry, the shift Z2 symmetry X(z) 7→ X(z) + πχ, and we
will review it and the relations between two orbifolds by the reflection Z2 and by the shift Z2

in Section 5.3.3. This perspective of another symmetry was not explicitly used in the original
proof of Aut(V ♮) ∼= M by [FLM88], but [DGM90a] revealed that it provides a clear way of
understanding the proof. Lastly, in Section 5.3.4, we will briefly review a uniform treatment of
Z2-orbifold and fermionization, although it is not directly related to the monstrous moonshine.
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5.3.1 Orbifold by Reflection Z2 Symmetry

The reflection automorphism θ0
We first explain what the reflection Z2 symmetry of a lattice VOA VL is.

Proposition 5.5. Any lift θ ∈ O(L̂) of −idL ∈ O(L) in the exact sequence (5.61) satisfies θ2 =

idL̂.

Proof. Since ek ·e−k = ε̂(k,−k), we have e−k = ε̂(k,−k)(ek)−1. Hence, for a given k ∈ L, there
is m ∈ Z such that θ(ek) = κm(ek)−1. Therefore, by using θ(κ) = κ from the definition (5.60) of
O(L̂),

θ2(ek) = κmθ(ek)−1 = κmκ−mek = ek. (5.67)

Suppose the 2-cocycle ε̂ : L×L→ Z2 is bihomomorphic, or we customarily say it is bilinear.
In fact, we will eventually use the bilinear one (C.13) for the 2-cocycle ε appearing in (5.34).
Then, the map θ0 : L̂→ L̂ defined as

θ0(κ
mek) = κme−k (5.68)

is a homomorphism, because

θ0(e
k · el) = ε̂(k, l)e−k−l, θ0(e

k) · θ0(el) = ε̂(−k,−l)e−k−l, (5.69)

and ε̂(k, l) = ε̂(−k,−l) by the assumption of bilinearity. θ0 is obviously an automorphism in
O(L̂), and hence it extends to the automorphism of VL as in (5.63):

θ0(α1(−m1) · · ·αl(−ml)e
k) = (−α1)(−m1) · · · (−αl)(−ml)e

−k. (5.70)

By Proposition 5.5, this θ0 generates a subgroup Z2 of Aut(VL), and this is the reflection Z2

symmetry of the lattice VOA VL.
In physics notation, the action of θ0 on a state is

θ0α
i1
−m1
· · ·αil−ml

|k⟩ = (−αi1−m1
) · · · (−αil−ml

)|−k⟩, (5.71)

and this can be described as the reflection symmetry of the chiral bosons (5.31)

X i(z) 7→ −X i(z) for all i = 1, . . . , n. (5.72)

The θ0-twisted sector
The orbifold of a lattice VOA VL by the reflection Z2 symmetry Z2 = ⟨θ0⟩ ⊂ Aut(VL) is done

by the following two steps.

1. Introduce the θ0-twisted sector (VL)tw.
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2. Project the whole VL ⊕ (VL)tw to the θ0-invariant states (VL)0 ⊕ (VL)
0
tw =: ṼL.

The sectors24 can be summarized as

Z2 = ⟨θ0⟩ untwisted twisted
even (VL)

0 (VL)
0
tw

odd (VL)
1 (VL)

1
tw

. (5.73)

The construction of an orbifold by more general finite group symmetry is also accomplished by
similar two steps, as reviewed in Section F.2.1.

We review the construction of the twisted sector (VL)tw. Let L be an even self-dual lattice
of rank n, and the 2-cocycle ε̂ be the specific one ε in (C.13) associated with the commutator
c(k, k′) = κk·k

′ and the quadratic form q(k) = κ
1
2
|k|2 , in the rest of this Section 5.3. As a result,

the action of θ0 can be written as

θ0(e
k) = e−k = ε(k,−k)(ek)−1 = κ

1
2
|k|2(ek)−1, (5.74)

where in the last equation, we used the bilinearity of ε and Lemma A.4 (2) ε(k, k) = q(k) = κ
1
2
|k|2 .

If we follow [FLM88], we first define

K := {θ0(a)−1a | a ∈ L̂} (5.75)

= {κ
1
2
|k|2(ek)2 | k ∈ L} (5.76)

= {e2k | k ∈ L}. (5.77)

According to Theorem A.7, K is a subgroup of the center of L̂, and we have a central extension

1→ Z2 → L̂/K → L/2L→ 0. (5.78)

Similarly to the notation κmek of an element of L̂, we may write an element of L̂/K as κmγk+2L.
We will built the twisted sector on an irreducible representation of Q = L̂/K.

A more physicist-friendly description of the group Q is introduced in [DGM94, §5.3], so let
us follow it below. We define the gamma matrix algebra Γ(L) associated with L as the unital (that
is, Γ(L) contains 1 and hence C) C-algebra generated by {γk}k∈L satisfying

γkγk′ = (−1)k·k′γk′γk = ε(k, k′)γk+k′ , γ2k = (−1)
1
2
|k|2 . (5.79)

If we identify γk with ek, then Γ(L) is roughly the algebra C{L} with the relation (ek)2 =

(−1) 1
2
|k|2 introduced, which corresponds to the quotient by K.

We define a group Q := {±γk | k ∈ L}. From the relations (5.79), it is obvious that |Q| =
21+n. In particular, if we take a Z-basis e1, . . . , en of L, then

Q = {±γt1e1 · · · γ
tn
en}ti=0,1 . (5.80)

Moreover, Q is an extraspecial 2-group, which is defined as follows.
24(VL)

0 and (VL)
0
tw here in the main text are denoted by (VL)

θ0 and (V T
L )θ0 respectively in [FLM88].

(VL)
0, (VL)

1, (VL)
0
tw, (VL)

1
tw, and ṼL here are denoted byH+(L),H−(L),H+

T (L),H
−
T (L), and H̃(L), respectively

in [DGM94].
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Definition 5.6 (extraspecial p-group). A group G is called a p-group, if its order |G| is a power
of a prime p. A group G is called an elementary abelian p-group, if it is isomorphic to (Zp)n for
some n ∈ Z>0. A group G is called an extraspecial p-group and denoted by p1+n, if the center
Z(G) of G satisfies Z(G) ∼= Zp and G/Z(G) ∼= (Zp)n. ■

It is known that for any extraspecial p-group p1+n, n is even.

Proposition 5.7. Q is an extraspecial 2-group 21+n.

Proof. We can show that the center of Q is {±1} as follows. If γk is in the center of Q, then
k · k′ ∈ 2Z for any k′ ∈ L. This means k

2
∈ L∗, where L∗ is the dual lattice defined as (2.14).

Since we assumed L is self-dual, k ∈ 2L, and therefore γk = ±1 by using the relations (5.79).
Finally, Q/{±1} ∼= L/2L ∼= (Z2)

n.

The irreducible representations ofQ are, the 2n one-dimensional ones ofQ/{±1} ∼= (Z2)
n ex-

tended so that they map the center {±1} to 1, and the unique 2
n
2 -dimensional faithful one. We can

understand this 2
n
2 -dimensional irreducible representation as follows. We can show [DGM90b,

Appendix C] that Q can be written as

Q = {±γ̃t11 · · · γ̃tnn }ti=0,1 , (5.81)

using the usual gamma matrices (the Clifford algebra)

γ̃iγ̃j = −γ̃j γ̃i (i ̸= j), γ̃2i = ε̃i, (5.82)

or equivalently {γ̃i, γ̃j} = 2ε̃iδij , for some ε̃i = ±1. Then, the construction of the 2
n
2 -dimensional

irreducible representation can be done by the usual argument of representing γ̃i as the tensor
product of n

2
Pauli matrices.

Among the irreducible representations of Q, this 2
n
2 -dimensional one is the only one which

can extend to the representation of the whole algebra Γ(L). (The other one-dimensional ones
cannot satisfy for example {γ̃i, γ̃j} = 0.) Therefore, the gamma matrix algebra Γ(L) have the
unique irreducible representation, which we will write X (L), of dimension 2

n
2 .

Remark 5.8. For more general even latticesL, the center of the group {±γk | k ∈ L} can be bigger
than {±1}. We still can construct its irreducible representations by a similar discussion using the
usual gamma matrices, but the resulting representations are not unique in general, because there
are degrees of freedom of assigning scalers ±1,±

√
−1 to the central elements. Such irreducible

representations have a common dimension smaller than 2
n
2 in general. See [DGM90b, Appendix

C] for more details. (Remark ends.)

We introduce the creation-annihilation operators c(r) (c ∈ L⊗Z C, r ∈ Z+ 1
2
) satisfy

[c(r), c′(r′)] = ⟨c, c′⟩rδr+r′,0. (5.83)
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Then the θ0-twisted sector (VL)tw is constructed as the C-vector space spanned by the elements in
the form of

c1(−r1) · · · cl(−rl)|s⟩, (5.84)

where c1, . . . , cl ∈ L ⊗Z C, r1, . . . , rl ∈ (Z + 1
2
)>0, and |s⟩ ∈ X (L). We also often use the

creation-annihilation operators cir := ei(r) with respect to an orthonormal basis e1, . . . , en of Rn

where the lattice L is embedded.
The operators

Lm =
1

2

∑
r∈Z+ 1

2

: crcm−r : +
n

16
δm,0 (5.85)

satisfy the Virasoro algebra (4.12) of central charge n. Then the state (5.84) is an eigenstate of L0

with eigenvalue

r1 + · · ·+ rl +
n

16
. (5.86)

Projection to θ0-invariant states
To complete the construction of the orbifold, we project the whole VL ⊕ (VL)tw to the θ0-

invariant states (VL)0 ⊕ (VL)
0
tw =: ṼL.

Recall that θ0 acts on VL as in (5.71)

θ0α
i
mθ

−1
0 = −αim, θ0|k⟩ = |−k⟩. (5.87)

Therefore, the θ0-invariant (θ0-even) sector (VL)0 and the θ0-odd sector (VL)1 are

(VL)
0 = SpanC({(even number of αim’s)(|k⟩+ |−k⟩)}

⊕ {(odd number of αim’s)(|k⟩ − |−k⟩)}), (5.88)

(VL)
1 = SpanC({(odd number of αim’s)(|k⟩+ |−k⟩)}

⊕ {(even number of αim’s)(|k⟩ − |−k⟩)}). (5.89)

We extend the action of θ0 on VL to the action of θ̂0 on VL ⊕ (VL)tw by defining

θ̂0c
i
rθ̂

−1
0 = −cir, θ̂0|s⟩ = (−1)

n
8 |s⟩. (5.90)

Recall that the rank n of an even self-dual lattice L is a multiple of 8. Then, the θ̂0-even sector
(VL)

0
tw and the θ̂0-odd sector (VL)1tw are

(VL)
0
tw = SpanC{states in (VL)tw with an integer L0-eigenvalue (5.86)}, (5.91)

(VL)
1
tw = SpanC{states in (VL)tw with a half-integer L0-eigenvalue (5.86)}. (5.92)

We finally define the orbifold ṼL of the lattice VOA VL by the reflection Z2 symmetry as

ṼL := (VL)
0 ⊕ (VL)

0
tw. (5.93)

The results of [FLM88], [DGM94, Lemma 5.3, Theorem 5.4] show that
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• (VL)
0 is a sub-VOA of VL. (This holds for a general Euclidean even lattice L.)

• (VL)
0
tw is a module of (VL)0.

• ṼL = (VL)
0 ⊕ (VL)

0
tw has a structure of VOA, extended from that on (VL)

0.
(This holds for a general Euclidean even lattice such that

√
2L∗ is also even.)

From the last point, we can indeed call the L0-eigenvalue (5.86) the weight.
The reflection Z2 orbifold ṼΛ24 of the Leech lattice VOA is called the monster VOA or the

moonshine module, and denoted by V ♮.

5.3.2 Automorphisms of Reflection Z2 Orbifold

As mentioned in Section 2.4, the monster group M is generated by a subgroupC(Λ24) = 21+24.Co1
and a specific order-2 element σ. In the proof of Aut(V ♮) ∼= M, the subgroup C(Λ24) is com-
ing from automorphisms acting on (VΛ24)

0 and (VΛ24)
0
tw separately. In this Section 5.3.2, we will

review these automorphisms, following [FLM88, §10.4] and [DGM94, §6.1].

The group O(L̂)/⟨θ0⟩ acting on the untwisted θ0-invariant sector (VL)
0

Let us begin with the automorphisms of the untwisted θ0-invariant sector (VL)0. Recall that
VL was built on L̂, and O(L̂) is a subgroup of Aut(VL). Since θ0 ∈ O(L̂) acts on (VL)

0 trivially,
Aut((VL)

0) has a subgroup O(L̂)/⟨θ0⟩. In the exact sequence (5.61), θ0 is a lift of −idL ∈ O(L),
so we have

1→ Hom(L,Z2)→ O(L̂)/⟨θ0⟩ → O(L)/{±idL} → 1. (5.94)

Since K defined in (5.75) is preserved by θ0 as a subgroup of L̂, the group O(L̂)/⟨θ0⟩ is a
subgroup of Aut(L̂/K). Recall Q = L̂/K. We define the natural group homomorphism

φ : O(L̂)→ O(L̂)/⟨θ0⟩ ⊂ Aut(Q). (5.95)

The entire automorphism group Aut(Q) of the group Q can be described as follows. Recall
that the groupQ = L̂/K satisfies the exact sequence (5.78), similar to (5.36). As a result, similarly
to (5.52), we have25 the following exact sequence [FLM88, Prop. 5.4.5]

1→ Hom(L/2L,Z2)
˜→ Aut(Q)

¯→ Aut(L/2L, q)→ 1, (5.96)

where q(k) = κ
1
2
|k|2|κ=−1 is the quadratic form and Aut(L/2L, q) := {g ∈ Aut(L/2L) |

q(g(k)) = q(k)}. η ∈ Hom(L/2L,Z2) acts on γk ∈ Q as η̃(γk) = η(k)γk, and f ∈ Aut(Q)

maps γk ∈ Q to ±γf̄(k). Here, from the exact sequence (5.78), we regarded k of γk ∈ Q as an
element of L/2L.

25Precisely speaking, we first have to consider Aut(Q, κ) := {f ∈ Aut(Q) | f(κ) = κ} similarly to (5.52),
but in the case at hand, since the center of Q is {1, κ}, any automorphism of Q maps κ to κ, so we just have
Aut(Q, κ) = Aut(Q).
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Since the quadratic form q only depends on the bilinear form of L, Aut(L/2L, q) contains
O(L)/{±idL} as a subgroup. By restricting the exact sequence (5.96) from Aut(L/2L, q) to
O(L)/{±idL}, we obtain a subgroup of Aut(Q). The restricted exact sequence coincides with
(5.94), and therefore this subgroup of Aut(Q) is exactly O(L̂)/⟨θ0⟩.

The group CX (L) acting on the Q-module X (L)
Next, we consider a certain subgroup of the linear automorphism group Aut(X (L)) of X (L).

Since X (L) is a Q-module, we have Q ⊂ Aut(X (L)). The normalizer26 NAut(X (L))(Q) of Q in
Aut(X (L)) is defined as

NAut(X (L))(Q) := {f ∈ Aut(X (L)) | fQ = Qf} (5.97)

= {f ∈ Aut(X (L)) | f • f−1 ∈ Aut(Q)}. (5.98)

In other words, for any γ ∈ Q, if we write the action of f ∈ Aut(X (L)) as

f(γ|s⟩) = f(γ)f |s⟩ for |s⟩ ∈ X (L), (5.99)

then f(γ) = f ◦ γ ◦ f−1 is again in Q if f ∈ NAut(X (L))(Q). It is known [FLM88, Prop. 5.5.3]
that we have the following exact sequence

1→ {±idX (L)} → NAut(X (L))(Q)
f 7→ f•f−1

−−−−−−→ Aut(Q)→ 1. (5.100)

When we extend an automorphism on X (L) to that on (VL)tw, we will need O(L) which
acts on the creation-annihilation operators c(r). In (5.100), the source of it is the subgroup
O(L̂)/⟨θ0⟩ of Aut(Q). We define a subgroup CX (L) of NAut(X (L))(Q) by restricting the exact
sequence (5.100) as

1→ {±idX (L)} → CX (L)
f 7→ f•f−1

−−−−−−→ O(L̂)/⟨θ0⟩ → 1. (5.101)

Note that, in addition to (5.100), NAut(X (L))(Q) also satisfies the exact sequence

1→ Q→ NAut(X (L))(Q)
f 7→ f•f−1

−−−−−−→ Aut(L/2L, q)→ 1, (5.102)

and correspondingly,

1→ Q→ CX (L)
f 7→ f•f−1

−−−−−−→ O(L)/{±idL} → 1. (5.103)

(5.102) can be shown as follows. Combining (5.96) and (5.100), we have NAut(X (L))(Q) ∼=
2.Aut(Q) ∼= 2.(2n.Aut(L/2L, q)), and the homomorphismNAut(X (L))(Q)→ Aut(L/2L, q); f 7→
f • f−1. The kernel of this homomorphism obviously contains Q because γkγk′γ−1

k = ±γk′ , and
this group Q has order 21+n, which exhausts the order of the whole kernel. So we obtained the
exact sequence (5.102).

26The normalizer of a subset H of a group G is defined as NG(H) := {g ∈ G | gH = Hg}. If H is a subgroup
of G, then NG(H) is the largest subgroup of G which contains H as a normal subgroup, hence its name.
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The group Ĉ(L) acting on the whole VL ⊕ (VL)tw
In order to extend the action of CX (L) on X (L) to the action on (VL)tw, we want the action of

g ∈ O(L) on the creation-annihilation operators c(r) 7→ g(c)(r), so we would like to revive O(L̂)
instead of O(L̂)/⟨θ0⟩. This also incorporates the action of O(L̂) on the untwisted sector VL at the
same time.

We define

Ĉ(L) := {(f, fX (L)) ∈ O(L̂)× CX (L) | φ(f) = fX (L) • f−1
X (L) ∈ O(L̂)/⟨θ0⟩}. (5.104)

It can be summarized into the following commutative diagram.

Ĉ(L) = 21+n.O(L)
/⟨(θ0,idX (L))⟩

ss

/⟨(idL̂,−idX (L))⟩

**

CX (L) = 21+n.(O(L)/{±idL})

f 7→f•f−1 ++

O(L̂) = 2n.O(L)

φ
tt

O(L̂)/⟨θ0⟩ = 2n.(O(L)/{±idL})
(5.105)

Here, we have the exact sequence

1→ Q
γ 7→(γ•γ−1,γ)−−−−−−−→ Ĉ(L)

(f,fX (L))7→f̄
−−−−−−−→ O(L)→ 1, (5.106)

where γ • γ−1 ∈ Aut(Q) in (5.100) is regarded as an element of Hom(L/2L,Z2) ⊂ Aut(Q) as
in (5.96), and extended to an element of Hom(L,Z2) ⊂ O(L̂). In fact, γkγk′γ−1

k = ηk(k
′)γk′ for

some ηk ∈ Hom(L,Z2).
The action of F = (f, fX (L)) ∈ Ĉ(L) on VL is the one already defined in (5.63),

F (α1(−m1) · · ·αl(−ml)e
k) = f̄(α1)(−m1) · · · f̄(αl)(−rl)f(ek), (5.107)

and the action on the state (5.84) in (VL)tw is defined as

F (c1(−r1) · · · cl(−rl)|s⟩) = f̄(c1)(−r1) · · · f̄(cl)(−rl)fX (L)(|s⟩). (5.108)

As a result, Ĉ(L) acts on the whole VL ⊕ (VL)tw.

The group C(L) acting on the Z2-orbifold ṼL = (VL)
0 ⊕ (VL)

0
tw

Now, we can see that θ̂0 defined in (5.90) is (θ0, (−1)
n
8 idX (L)) in Ĉ(L). Therefore, the group

C(L) := Ĉ(L)/⟨(θ0, (−1)
n
8 idX (L))⟩ acts on the θ̂0-invariant sector ṼL = (VL)

0 ⊕ (VL)
0
tw. From

(5.106), we have

1→ Q→ C(L)→ O(L)/{±idL} → 1. (5.109)
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When n is an even multiple of 8, then C(L) coincides with CX (L). When n is an odd multiple
of 8, for example when L is the Leech lattice Λ24, then C(L) fits into the commutative diagram
(5.105) as follows.

Ĉ(L) = 21+n.O(L)
/⟨(θ0,idX (L))⟩

ss
/⟨(θ0,−idX (L))⟩

��

/⟨(idL̂,−idX (L))⟩

**

CX (L) = 21+n.(O(L)/{±idL})

f 7→f•f−1 ++

C(L) = 21+n.(O(L)/{±idL})

��

O(L̂) = 2n.O(L)

φ
tt

O(L̂)/⟨θ0⟩ = 2n.(O(L)/{±idL})
(5.110)

In particular, when L is the Leech lattice Λ24, then C(Λ24) = 21+24.Co1, which we mentioned in
Section 2.4.

5.3.3 Triality and Shift Z2 Symmetry

The triality operator σ
From a given even self-dual lattice L, we have seen that we can construct two VOAs; one

is the lattice VOA VL, and the other is the orbifold ṼL of it by the reflection Z2 symmetry. We
also explained in Section 2.3.1 that from a double-even self-dual binary code C, we can construct
two even self-dual lattices; one is Λ(C) by Construction A, and the other is Λ̃(C) by the twisted
construction. As a result, from a double-even self-dual binary code C, we can consider four
VOAs, that is, VΛ(C), VΛ̃(C), ṼΛ(C), and ṼΛ̃(C). It was pointed out in [DGM90a, DGM94] that there
are isomorphisms σ among these VOAs, and this will provide one description of the proof of
Aut(V ♮) ∼= M as M = ⟨C(Λ24), σ⟩.

Recall that Λ(C) = Λ0(C) ⊔ Λ1(C) and Λ̃(C) = Λ0(C) ⊔ Λ3(C) in the notation27 of (2.34)–
(2.37). If we write the sector consisting of the states in the form of (5.29) with k ∈ Λi(C) as
VΛi(C), then

VΛ(C) = VΛ0(C) ⊕ VΛ1(C), (5.111)

VΛ̃(C) = VΛ0(C) ⊕ VΛ3(C). (5.112)

27The correspondence of the notations between [DGM94] and [FLM88, §12] is, in a situation where n is an odd
multiple of 8,

[DGM94] Λ(C) Λ2(C) ⊔ Λ3(C) Λ0(C) Λ1(C) Λ2(C) Λ3(C) σ, σ3 σ1 Nothing
[FLM88] L0 L1 Λ0 Λ2 Λ3 Λ1 σ τ σ1

.

Our main text basically follows [DGM94], but we will use τ instead of σ1 in Remark 5.9. We also use

these notes VΛi(C) VXi(Λ0(C)) (i = 0, 1, 2, 3) V 0
• V 1

•
[FLM88] VΛj

V ′
Λj

(j = 0, 2, 3, 1) V +
• V −

•
.
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In particular, since Λ0(C) is also a lattice, VΛ0(C) forms a VOA.
We can also introduce similar decompositions to the twisted sectors (VΛ(C))tw and (VΛ̃(C))tw as

follows. If we decompose the irreducible representation X (Λ(C)) of Γ(Λ(C)) and that X (Λ̃(C))
of Γ(Λ̃(C)) into irreducible representations of Γ(Λ0(C)), then we obtain X (Λ(C)) = X0(Λ0(C))⊕
X1(Λ0(C)) and X (Λ̃(C)) = X0(Λ0(C)) ⊕ X3(Λ0(C)), respectively. The dimensions of X (Λ(C))
and X (Λ̃(C)) are 2

n
2 , and those of Xi(Λ0(C)) are 2

n
2
−1 (see Remark 5.8). If we write the sector

consisting of the states in the form of (5.84) with |s⟩ ∈ Xi(Λ0(C)) as VXi(Λ0(C)), then

(VΛ(C))tw = VX0(Λ0(C)) ⊕ VX1(Λ0(C)), (5.113)

(VΛ̃(C))tw = VX0(Λ0(C)) ⊕ VX3(Λ0(C)). (5.114)

We further decompose these sectors into θ̂0-even sectors, denoted by the superscript 0, and
θ̂0-odd sectors, denoted by the superscript 1. As a result, the four VOAs can be summarized into
the following diagram.

VΛ(C) ṼΛ̃(C)

= =
(VΛ0(C))

0 (VΛ0(C))
0

⊕ ⊕
VΛ̃(C) = (VΛ0(C))

0 ⊕ (VΛ0(C))
1 ⊕ (VΛ3(C))

0 ⊕ (VΛ3(C))
1

⊕ ⊕
ṼΛ(C) = (VΛ0(C))

0 ⊕ (VΛ1(C))
0 ⊕ (VX0(Λ0(C)))

0 ⊕ (VX1(Λ0(C)))
0

⊕ ⊕
(VΛ1(C))

1 (VX3(Λ0(C)))
0

(5.115)

At the end of Section 5.3.1, we mentioned that (VL)0 is a sub-VOA of VL, for an even lattice L.
Since Λ0(C) is an even lattice, (VΛ0(C))

0 is a sub-VOA of VΛ0(C). Moreover, every sector (VΛi(C))
p

and (VXi(Λ0(C)))
p (i = 0, 1, 2, 3 and p = 0, 1)28 has the structure of irreducible representation of

(VΛ0(C))
0 [DGM94, Prop. 7.1].

[DGM90a, DGM94] constructed a map σ acting on these sectors as

⟲ ⟲

(VΛ0(C))
0 (VΛ0(C))

0

⟲

(VΛ0(C))
0 (VΛ0(C))

1 (VΛ3(C))
0 (VΛ3(C))

1

⇆ ⇄ ⇆

(VΛ0(C))
0 (VΛ1(C))

0 (VX0(Λ0(C)))
0 (VX1(Λ0(C)))

0

⟲
(VΛ1(C))

1 (VX3(Λ0(C)))
0

⟲ ⟲

, (5.116)

28See [DGM94] for the details of the sectors with i = 2.
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and

σ : VΛ(C) → VΛ(C), (5.117)

σ : VΛ̃(C) → ṼΛ(C), σ : ṼΛ(C) → VΛ̃(C), (5.118)

σ : ṼΛ̃(C) → ṼΛ̃(C), (5.119)

are all isomorphisms of VOAs. This map σ is called the triality operator. This map mixes the
untwisted sector and the twisted sector of ṼΛ̃(C).

Remark 5.9. While σ preserves the first and fourth rows of (5.116), there also exists a map τ

(see footnote 27) which preserves the first and second rows of (5.116). These operators σ and τ
generate a group ⟨σ, τ⟩ isomorphic to the symmetric group S3, hence the term triality operator.
(Remark ends.)

For example, in the case where C is the binary Golay code G24, we can see from Table 2.2
that VΛ(C) is the lattice VOA V(A1)24 of the (A1)

24 Niemeier lattice, ṼΛ(C) ∼= VΛ̃(C) is the Leech
lattice VOA VΛ24 , and ṼΛ̃(C) is the reflection Z2 orbifold ṼΛ24 of the Leech lattice VOA, that is, the
monster VOA V ♮.

The shift Z2 symmetry
We briefly review that, from the viewpoint of physics, the CFT VΛ̃(C) introduced above can be

regarded as the orbifold of the CFT VΛ(C) by its shift Z2 symmetry.
If we consider an even self-dual lattice Λ(C) constructed by Construction A from a doubly-

even self-dual code C, the resulting CFT has the shift Z2 symmetry with respect to the shift vector
χ := 1√

2
1⃗ ∈ Λ(C) as

X(z) 7→ X(z) + πχ, (5.120)

Vk(z) ∝ : e
√
−1k·X(z) : 7→ e

√
−1πk·χVk(z) =

{
Vk(z) (k ∈ Λ0(C))
−Vk(z) (k ∈ Λ1(C))

. (5.121)

In terms of O(L̂) ⊂ Aut(VL) in (5.61), if we define χ∗ := ⟨χ,−⟩ ∈ Hom(L,Z), the shift Z2

symmetry is the subgroup Z2 ⊂ O(L̂) generated by (χ∗ mod 2) ∈ Hom(L,Z2) ⊂ O(L̂).
Then we can also consider the states under the twisted boundary condition by this shift Z2

symmetry. The even and odd sectors of the untwisted and twisted sectors under the action of the
shift Z2 symmetry can be described as (see for example [LS19, Appendix A], [KNO23b, §2.2])

shift Z2 untwisted twisted
even VΛ0(C) VΛ3(C)

odd VΛ1(C) VΛ2(C)

. (5.122)

Recall that VΛi(C) denotes the sector consisting of the states in the form of (5.29) with k ∈ Λi(C).
As a result, the orbifold of the CFT VΛ(C) by its shift Z2 symmetry consists of the even sectors

VΛ0(C)⊕VΛ3(C), which is precisely the CFT VΛ̃(C). So we can say that the isomorphism σ : ṼΛ(C) ∼=
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VΛ̃(C) in (5.118) is the isomorphism between the reflection Z2 orbifold and the shift Z2 orbifold of
the lattice CFT VΛ(C) constructed from a doubly-even self-dual code C.

In fact, the triality operator σ is constructed in [DGM94, §7] as follows. In the CFT VΛ(C), for
each axis of the lattice Λ(C), there exists an ŝu(2)1 current

Ja(z1)Jb(z2) ∼
1

2
δab

1

(z1 − z2)2
+
√
−1ϵabc

Jc(z2)

z1 − z2
, (5.123)

as

J1(z) =

√
−1√
2
∂X i(z) ∈ (VΛ0(C))

1, (5.124)

J2(z) = −
1

2
(V√2ei

(z) + V−
√
2ei
(z)) ∈ (VΛ1(C))

0, (5.125)

J3(z) =

√
−1
2

(V√2ei
(z)− V−√

2ei
(z)) ∈ (VΛ1(C))

1. (5.126)

The operator σ is constructed so that it implements the SU(2) rotation J1 ↔ J2 and J3 7→ −J3.
As a result, the reflection Z2 symmetry J1 7→ −J1, J2 7→ J2, J3 7→ −J3 is essentially equivalent
to the shift Z2 symmetry J1 7→ J1, J2 7→ −J2, J3 7→ −J3.

We refer the reader to [KNO23b, KY24] for the shift Z2 symmetries of more general lattice
CFTs, and their orbifolds (and fermionizations).

5.3.4 Z2-orbifold and Fermionization

In the modern understanding of fermionization [Tac18, KTT19] (see also [HNT20, BSZ24]), we
can uniformly treat Z2-orbifold and fermionization. Let us briefly review it.

In general, suppose a theory T has a non-anomalous Z2 symmetry, and the even and odd
sectors of the untwisted and twisted sectors are

Z2 untwisted twisted
even S U

odd T V

. (5.127)

By orbifolding T by the Z2 symmetry, a new Z2 symmetry emerges,29 and we obtain the following
orbifold theory:

(orbifold) untwisted twisted
even S T

odd U V

. (5.128)

29If we write the partition function of the theory T on a torus twisted by the original Z2 symmetry in spa-
tial and temporal directions as Z(T )at

as
(as, at ∈ {0, 1}; see also Section F.2.1), then the new Z2 symmetry of

the orbifold theory T̃ is Z(T̃ )bt
bs

= 1
2

∑
as,at∈{0,1}(−1)asbt−atbsZ(T )at

as
. More generally, if the original the-

ory T [A] is on a surface Σ and coupled to the Z2 gauge field A ∈ H1(M ;Z2), then the orbifold theory is
T̃ [B] := 1√

|H1(Σ;Z2)|

∑
A∈H1(Σ;Z2)

(−1)
∫
Σ
A⌣BT [A]. See for example [BT17, §2], [LOZ23, §2.5], [BSZ24, §2]

for more details.
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By fermionizing T by the Z2 symmetry, on the other hand, we obtain a fermionic CFT. There
are two ways of fermionization:

(fermionic) NS R
(−1)F = +1 S U

(−1)F = −1 V T

,

(fermionic′) NS R
(−1)F = +1 S T

(−1)F = −1 V U

. (5.129)

Here, NS and R denote the Neveu-Schwarz sector and the Ramond sector, respectively. In terms
of a fermionic field ψ(z), the NS sector satisfies the periodic boundary condition ψ(e2π

√
−1z) =

ψ(z), and the R sector satisfies the anti-periodic boundary condition30 ψ(e2π
√
−1z) = −ψ(z).

Remark 5.10. It is tempting to regard the NS/R sectors as the untwisted/twisted sectors by some
Z2 symmetry. In fact, in mathematics, the NS sector and the R sector are usually formulated
as a VOSA and its canonically-twisted module respectively (see Section 6.1.1). However, from
the perspective of physics, it is natural to distinguish the NS/R sectors and the untwisted/twisted
sectors, as the former is specified by the spin structure, but the latter is specified by the Z2 gauge
field of the theory. See also footnote 58. (Remark ends.)

Remark 5.11. As remarked in Section 5.2.1, if we used an even self-dual lattice of signature (r, s),
then we obtain a bosonic lattice CFT of central charge (c, c̃) = (r, s), which is modular invariant
up to the phases (E.1, E.2) from the gravitational anomaly ν = 2(c̃− c). Recall that the signature
(r, s) of an even self-dual lattice satisfies r − s ≡ 0 mod 8 [Ser73, Ch. V]. More generally,
it is known that the gravitational anomaly of a bosonic CFT with central charge (c, c̃) satisfies
2(c̃ − c) ≡ 0 mod 16. Therefore, if we are given a fermionic CFT with central charge satisfying
2(c̃−c) ≡ 0 mod 16, then we can bosonize it as a reverse operation of the fermionization [BSZ24].
(Remark ends.)

Lattice CFTs constructed from more general codes over finite fields, and their orbifolds and
fermionizations, are investigated in [GJF18, Yah22, KY23a, KNO23b, KY24]. Recently, the con-
struction of CFTs from quantum codes through Lorentzian lattices was established in [DS20a,
DS20b], and has been developed in many directions; see for example [DS20c, DS21, BDR21,
ACD22,DK22], [HKM22], [Fur22,Fur23], [BR23], [KNO22,AKN+23,KNO23a,KNO23b,AKN24].
We also note that [HM20] established a relation between a certain quantum code and a particular
K3 CFT studied in [GTVW13] in the context of Mathieu moonshine.

30 If we move to the cylinder coordinate σ = σ1 +
√
−1σ2 defined as z = e−

√
−1σ , since ψcyl(σ) = ψ(z)( ∂z∂σ )

1
2 ,

the NS sector is anti-periodic ψcyl(σ + 2π) = −ψcyl(σ), and the R sector is periodic ψcyl(σ + 2π) = ψcyl(σ).
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6 Conway Moonshine and Clifford Module VOSA
The Conway moonshine was first established in [Dun07] as an N = 1 VOSA V f♮ such that its
automorphism group preserving theN = 1 structure is isomorphic to the sporadic Conway group
Co1. Compared to the monstrous moonshine, which was led by the existence of the modular
function, the Conway moonshine usually emphasizes the existence of such a VO(S)A with the
Conway group symmetry itself. The Conway moonshine module V f♮ is a kind of Z2-orbifold of
the VOSA describing 24 real free fermions. So we first review the construction of the VOSA of
free fermions as a Clifford algebra module in Section 6.1, and then the construction of V ♮ and
the Conway group action on it in Section 6.2. We finally review the statement of the Conway
moonshine in Section 6.3.

6.1 Clifford Module VOSA

In this Section 6.1, we review the construction of the VOSA of free fermions as a Clifford algebra
module. In Section 6.1.1, we will introduce the Clifford algebras Cliff(â), Cliff(âtw) and their
modules A(a), A(a)tw, which describe the NS and R sectors of the fermions, respectively. In
Section 6.1.2, we will review the spin group action on the modules.

6.1.1 Clifford Module Construction

The tensor algebra of a K-vector space V is

T (V ) :=
∞⊕
d=0

V ⊗d, (6.1)

where V ⊗0 = K.
Let V be a K-vector space with a quadratic form q (see Remark A.3 for the definition of

a quadratic form). Its Clifford algebra Cliff(V, q) is the quotient of its tensor algebra by the
relation31 u⊗ u ∼ −q(u) for u ∈ V .

Cliff(V, q) := T (V )/u⊗ u ∼ −q(u). (6.2)

If the characteristic of the field K is not 2, then by using the the associated form ⟨u, v⟩ := 1
2
(q(u+

v)− q(u)− q(v)) in the sense of (A.46), we have q(u) = ⟨u, u⟩, and the relation u⊗ u = −q(u)
is equivalent to

u⊗ v + v ⊗ u = −2⟨u, v⟩ (6.3)

for u, v ∈ V .
If the quadratic form q is 0, then the Clifford algebra is the exterior algebra

∧
V of V , and the

multiplication ⊗ is often denoted by ∧. For example, u ∧ v = −v ∧ u for u, v ∈ V .
31 Another convention u⊗ u ∼ q(u) is also commonly used for the definition of Cliff(V, q).
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Construct the VOSA
Let a be an n-dimensional C-vector space with a non-degenerate symmetric bilinear form

⟨−,−⟩. Define

â :=
⊕
r∈Z+ 1

2

a(r) (6.4)

as the direct sum of copies of a labeled by r ∈ Z+ 1
2
, and the symmetric bilinear form on â as the

C-bilinear extension of

⟨u(r), v(s)⟩ = ⟨u, v⟩δr+s,0 (u, v ∈ a, r, s ∈ Z+
1

2
). (6.5)

Here, u(r) (u ∈ a) denotes an element in a(r).
We define the Clifford algebra Cliff(â) of â as the one with respect to the quadratic form

q(û) = ⟨û, û⟩ (û ∈ â). That is,

Cliff(â) := T (â)/û⊗ û ∼ −⟨û, û⟩. (6.6)

We will omit ⊗ below. It is easy to see that the relation ûû = −⟨û, û⟩ is equivalent to

{u(r), v(s)} := u(r)v(s) + v(s)u(r) = −2⟨u(r), v(s)⟩. (6.7)

We introduce a polarization32 â = â− ⊕ â+ as

â− :=
⊕

r∈(Z+ 1
2
)<0

a(r), â+ :=
⊕

r∈(Z+ 1
2
)>0

a(r). (6.8)

Cliff(â−) =
∧

â− and Cliff(â+) =
∧
â+ are also defined in the same way as Cliff(â), and they

are subalgebras of Cliff(â).
Take the Cliff(â+)-module C, whose basis is denoted by |0⟩, on which u(r) ∈ Cliff(â+) acts

as u(r)|0⟩ = 0 (u ∈ V, r > 0), and C ⊂ Cliff(â+) acts as the usual multiplication. We define the
Cliff(â)-module A(a) as the induced module from it:

A(a) := Cliff(â)⊗Cliff(â+) C|0⟩. (6.9)

That is, â+ annihilates |0⟩, and A(a) is isomorphic to Cliff(â−)|0⟩ as a Cliff(â−)-module.
We can equip A(a) with a VOSA structure of central charge n

2
. Let ψ1, . . . , ψn be an orthonor-

mal33 basis of a with ⟨ψi, ψi⟩ = +1. The Virasoro element is given as

ω = −1

4

n∑
i=1

ψi(−
3

2
)ψi(−

1

2
)|0⟩. (6.10)

32An isotropic vector of a vector space V with a quadratic form q is a vector v ∈ V (sometimes required to be non-
zero) such that q(v) = 0. A polarization of V is a decomposition V = V + ⊕ V − into maximal isotropic subspaces
with respect to q. Note that the associated form of the quadratic form (A.45) is also called polarization, although we
do not use this terminology in these notes to avoid confusion.

33Since we are considering the symmetric bilinear form ⟨−,−⟩, not a Hermitian form, on the C-vector space, there
is no concept of the signature of the form, and we can always take an orthonormal basis with squared norm +1.
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The weight of the state u1(−r1) · · ·ul(−rl)|0⟩ (ui ∈ a, ri ∈ (Z+ 1
2
)>0) is

wt(u1(−r1) · · ·ul(−rl)|0⟩) = r1 + · · ·+ rl. (6.11)

The map −idâ : â → â induces the map θ : Cliff(â) → Cliff(â) called the parity involution.
We write its eigenspace decomposition as Cliff(â) = Cliff(â)0⊕Cliff(â)1 with eigenvalues 1 and
−1 respectively. We introduce the parity decomposition A(a) = A(a)0 ⊕ A(a)1 by

A(a)0 := Cliff(â)0|0⟩ = (
even∧

â−)|0⟩, (6.12)

A(a)1 := Cliff(â)1|0⟩ = (
odd∧

â−)|0⟩. (6.13)

This introduces the Z2-grading of the VOSA on A(a). Any states in A(a)0 have integer weights,
and states in A(a)1 have half-integer weights. In particular, the subalgebra A(a)0 of A(a) is a
VOA.

In physics notation, ψi(r) is often denoted by ψir, and the elements of â− and â+ in the form
of u(r) are called the creation operators and the annihilation operators, respectively. A(a) is the
NS sector of the n real free chiral fermion theory.

Construct the R sector
In general, for a vertex superalgebra V = V 0̄ ⊕ V 1̄, its canonically-twisted module M is a

Z2-twisted module M of V with Z2-grading M 0̄ ⊕ M 1̄ such that the twisted vertex operators
(4.18)

Y M(v, z) =
∑
n∈ 1

2
Z

vM(n)z
−n−1 (6.14)

satisfy, for any v ∈ V p̄, vM(n) mapsM q̄ toMp+q, and vM(n) = 0 if n ̸∈ Z+ p
2
. Any vertex superalgebra

has the parity involution θ := idV 0̄ ⊕ (−idV 1̄), and in light of this, a canonically-twisted module
is a θ-twisted supermodule.

We can construct a canonically-twisted module A(a)tw of A(a) as follows. It is the R sector
of the n real free chiral fermion theory in the language of physics.

We assume n = dim a is even below. Define

âtw :=
⊕
r∈Z

a(r) (6.15)

and the bilinear form on âtw as

⟨u(r), v(s)⟩ = ⟨u, v⟩δr+s,0 (u, v ∈ a, r, s ∈ Z). (6.16)

We choose a polarization of a as a = a− ⊕ a+. They are usually chosen so that

a− = SpanC{Ψ1, . . . ,Ψn
2
}, a+ = SpanC{Ψ1, . . . ,Ψn

2
}, (6.17)
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where

Ψi :=
1√
2
(ψ2i−1 +

√
−1ψ2i), Ψi :=

1√
2
(ψ2i−1 −

√
−1ψ2i), (6.18)

for an orthonormal basis ψ1, . . . , ψn of a. Then we introduce a polarization âtw = â−tw ⊕ â+tw as

â−tw := a−(0)⊕
⊕
r∈Z<0

a(r), â+tw := a+(0)⊕
⊕
r∈Z>0

a(r). (6.19)

Again, Cliff(â±tw) =
∧

â±tw are subalgebras of Cliff(â).
Take the Cliff(â+tw)-module C, whose basis is denoted by |0⟩R, on which u(r) ∈ Cliff(â+tw)

acts as u(r)|0⟩R = 0, and C ⊂ Cliff(â+) acts as the usual multiplication. We define the Cliff(âtw)-
module A(a)tw as

A(a)tw := Cliff(âtw)⊗Cliff(â+tw) C|0⟩R. (6.20)

That is, â+tw annihilates |0⟩R.
We can equip A(a)tw with a canonically-twisted A(a)-module structure. The weight of the

state u1(−r1) · · ·ul(−rl)u−1 (0) · · ·ul′(0)|0⟩R (ui ∈ a, ri ∈ Z>0, u−i ∈ a−) is

wt(u1(−r1) · · ·ul(−rl)u−1 (0) · · ·ul′(0)|0⟩R) = r1 + · · ·+ rl +
n

16
. (6.21)

The Z2-grading on A(a)tw is introduced as follows: we assign 0 or 1 to the parity of |0⟩R, and
then (

∧even â−tw)|0⟩R has the same parity as |0⟩R, whereas (
∧odd â−tw)|0⟩R has the opposite parity.

The parity of |0⟩R is basically arbitrary. For example, [FFR91] always defines the parity of |0⟩R
as 0. In these notes, following [DMC14], we specify it as n

4
mod 2, when n is a multiple of 4,

which will be justified in Section 6.1.2 as the eigenvalue (−1)n
4 of |0⟩tw with respect to the action

by the lift ψ1 · · ·ψn ∈ Spin(a) of −ida ∈ SO(a). We write the subspaces of A(a)tw with parity 0
and 1 as A(a)0tw and A(a)1tw, respectively.

6.1.2 Spin Group Action

Spin group Spin(a)

The details of the definition and properties of the spin group are reviewed in Appendix D.
Here, we only present the main points.

Recall that a is an n-dimensional C-vector space with symmetric bilinear form ⟨−,−⟩. Simi-
larly to Cliff(â), we introduce the parity decomposition Cliff(a) = Cliff(a)0 ⊕ Cliff(a)1 induced
by −ida. The Clifford algebra Cliff(a) contains the spin group Spin(a) defined by

Spin(a) := {u1 · · ·u2l | ui ∈ a, ⟨ui, ui⟩ = 1} (6.22)

= {x ∈ (Cliff(a)0)× | xax−1 ⊂ a, xTx = 1}. (6.23)

Here, (Cliff(a)0)× is the set of invertible elements of Cliff(a)0, and xT is defined as xT = ul · · ·u1
if x = u1 · · ·ul (ui ∈ a). If x ∈ C, then xT = x. (This is the definition of the spin group in the
sense of (D.25, D.27).)

An important property of Spin(a) is the following fact.
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Proposition 6.1. Spin(a) is a double cover of SO(a) defined as

SO(a) := {O ∈ SL(a) | ⟨Ou,Ov⟩ = ⟨u, v⟩ for any u, v ∈ a}. (6.24)

More precisely, Spin(a) is a central extension of SO(a) by Z2

1→ {±1Spin(a)} ↪→ Spin(a)
φ−→ SO(a)→ 1, (6.25)

where φ : Spin(a)→ SO(a) is the group homomorphism defined as

φ : x 7→ x • x−1. (6.26)

In particular, if we take an orthonormal basis ψ1, . . . , ψn of a, then the lifts ±Ô ∈ Spin(a) of
O ∈ SO(a) act on

∑
i c
iψi ∈ a as (D.34)

(±Ô)

(ψ1 · · ·ψn
)c

1

...
cn


 (±Ô)−1 =

(
ψ1 · · ·ψn

)
O

c
1

...
cn

 , (6.27)

where O is represented as a matrix with respect to the basis {ψi}i.

The Spin(a)-action on A(a) and A(a)tw
The Clifford module VOSA A(a) and its twisted module A(a)tw naturally admit a Spin(a)-

action as follows.
The action of x ∈ Spin(a) on u1(r1) · · ·ul(rl)|0⟩ ∈ A(a) (ri ∈ Z+ 1

2
) is defined as

u1(r1) · · ·uk(rk)|0⟩ 7→ (xu1x
−1)(r1) · · · (xukx−1)(rk)|0⟩. (6.28)

This action is well-defined because {(xuix−1)(ri), (xujx
−1)(rj)} = −2⟨xuix−1, xujx

−1⟩δri+rj ,0 =
{ui(ri), uj(rj)}. Since −1Spin(a) ∈ Spin(a) acts on A(a) trivially, this Spin(a)-action reduces to
Spin(a)/⟨−1Spin(a)⟩ ∼= SO(a)-action.

To describe the action of Spin(a) onA(a)tw, we identify Cliff(a) with Cliff(a(0)) ⊂ Cliff(âtw).
Then x ∈ Spin(a) ⊂ Cliff(a) acts on |0⟩R. So the action of x ∈ Spin(a) on u1(r1) · · ·ul(rl)|0⟩R ∈
A(a)tw (ri ∈ Z) is defined as

u1(r1) · · ·uk(rk)|0⟩R 7→ (xu1x
−1)(r1) · · · (xukx−1)(rk)x|0⟩R. (6.29)

The action of −1Spin(a) ∈ Spin(a) on A(a)tw is nontrivial, and A(a)tw is only a projective repre-
sentation of SO(a).

There are two lifts of −1SO(a) ∈ SO(a). If we take an orthonormal basis ψ1, . . . , ψn of a, then
they can be explicitly written as ±ψ1 · · ·ψn ∈ Spin(a). Depending on the choice of the polariza-
tion a = a− ⊕ a+, one acts as |0⟩R 7→

√
−1

n
2 |0⟩R, and the other acts as |0⟩R 7→ −

√
−1

n
2 |0⟩R.

The former one is denoted by z and called the lift of −1SO(a) associated with the polariza-
tion. When n = dim a is a multiple of 4, the Z2-grading of the canonically-twisted module
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A(a)tw = A(a)0tw ⊕A(a)1tw introduced at the end of the previous Section 6.1.1 coincides with the
eigenspace decomposition with respective to z with eigenvalue +1 and−1. The Z2-grading of the
VOSAA(a) = A(a)0⊕A(a)1 also coincides with the eigenspace decomposition with respect to z.
The eigenvalues of each sector with respect to z, −z, and −1Spin(a) can be summarized as follows.

A(a)0 A(a)1 A(a)0tw A(a)1tw
eigenvalue w.r.t. z 1 −1 1 −1
eigenvalue w.r.t. −z 1 −1 −1 1

eigenvalue w.r.t. −1Spin(a) 1 1 −1 −1

(6.30)

If we choose the polarization as in (6.17), then we can explicitly check

z = +ψ1 · · ·ψn =
√
−1

n
2 (Ψ1Ψ1 + 1) · · · (Ψn

2
Ψn

2
+ 1). (6.31)

Finally, we remark that these Spin(a)-actions on A(a) and A(a)tw are weight-preserving and
parity-preserving.

6.2 Duncan’s Supermoonshine Module

In this Section 6.2, we review the construction of the Conway moonshine module V f♮. It is
constructed from the VOSA of free fermions in a way similar to the Z2-orbifold in Section 6.2.1,
and we will see how the Conway group action is realized on it in Section 6.2.2.

6.2.1 Construction of Duncan’s Module

We set a = Λ24 ⊗Z C where Λ24 is the Leech lattice with symmetric bilinear form ⟨−,−⟩. In
particular, n = dim a = 24. The A(a)0-module structure on

V f♮ := A(a)0 ⊕ A(a)0tw (6.32)

extends uniquely to an VOSA structure, and the A(a)0-module structure on

V f♮
tw := A(a)1 ⊕ A(a)1tw (6.33)

extends uniquely to a canonically-twisted V f♮-module structure. There seems no consensus on the
name of this VOSA V f♮, or the whole theory V f♮⊕V f♮

tw . We call it the Conway (super)moonshine
module following [TW17], or Duncan’s (supermoonshine) module following [AKL22], because it
was first constructed by Duncan in [Dun07], although it should be noted that it was also revisited
with Mack-Crane in [DMC14].
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The original theory A(a) and Duncan’s module V f♮ are in the relation similar to the Z2-
orbifold34 of each other.

NS R

Z2 = ⟨z⟩ A(a) A(a)tw
even A0(a) A0(a)tw
odd A1(a) A1(a)tw

‘⟨z⟩-orbifold’
⇄

‘⟨−1Spin(a)⟩-orbifold’

NS R

Z2 = ⟨−1Spin(a)⟩ V f♮ V f♮
tw

even A0(a) A1(a)

odd A0(a)tw A1(a)tw

(6.34)

We may consider the similar construction with respect to −z (6.30), and the resulting theory
is denoted by V s♮.

NS R

Z2 = ⟨−z⟩ A(a) A(a)tw
even A0(a) A1(a)tw
odd A1(a) A0(a)tw

‘⟨−z⟩-orbifold’
⇄

‘⟨−1Spin(a)⟩-orbifold’

NS R

Z2 = ⟨−1Spin(a)⟩ V s♮ V s♮
tw

even A0(a) A1(a)

odd A1(a)tw A0(a)tw

(6.35)

The A(a)0-module structure on

V s♮ := A(a)0 ⊕ A(a)1tw (6.36)

extends uniquely to an VOSA structure, and the A(a)0-module structure on

V s♮
tw := A(a)1 ⊕ A(a)0tw (6.37)

extends uniquely to a canonically-twisted V s♮-module structure. This V s♮ is isomorphic to V f♮ as
a VOSA, and also called the Conway moonshine module.

Remark 6.2 (lattice description). Through the boson-fermion correspondence [Fre81], the VOA
A(a)0 is isomorphic to the lattice VOA VD12 of the D12 lattice. Recall that

Dn := {(k1, . . . , kn) ∈ Zn |
n∑
i=1

ki ≡ 0 mod 2}. (6.38)

It is known that the irreducible representations of a lattice VOA VL for an even lattice L are in
one-to-one correspondence with the elements of the quotient L∗/L of the dual lattice L∗, called
the discriminant group35 of the lattice L, and labeled as {Vλ+L}λ+L∈L∗/L [Don93].

The Dn lattice is
√
2× the lattice constructed by Construction A from the even weight code

En := {w ∈ Fn2 | wt(w) ≡ 0 mod 2} [CS99, Ch. 3 §2.3], or
√
2× the lattice constructed by

34 In the viewpoint of footnote 58, we assume that the spin structures on the tori of both the original and orbifold
theories are the NS sectors (in the spatial direction), and take the Z2-orbifold by the Z2 gauge field. In this sense,
A(a)tw is in fact the Z2-twisted sector of the NS sector A(a). The reason why we can also regard A(a)tw as the R
sector is that the fermions are subject to the sum σ +A of the spin structure σ and the Z2 gauge field A.

35If a lattice L is integral, we have L ⊂ L∗, and hence the discriminant group L∗/L is well-defined. Letting G
denote the Gram matrix L, we have |L∗/L| = detG.
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Construction B from the trivial code 0n of length n. Mimicking (2.34)–(2.37) for doubly-even
self dual code C, let us define for 0n with n ≡ 0 mod 4,

Λ0(0n) := Zn+ = Dn, (6.39)

Λ1(0n) := Zn− = (1, 0, . . . , 0) +Dn, (6.40)

Λ2(0n) :=
1

2
1⃗ + Zn

(−)
n
4 +1 =

1

2
((−1)

n
4
+1, 1, . . . , 1) +Dn, (6.41)

Λ3(0n) :=
1

2
1⃗ + Zn

(−)
n
4
=

1

2
((−1)

n
4 , 1, . . . , 1) +Dn. (6.42)

Now, we have D12 = Λ0(012), and D∗
12 =

⊔3
i=0 Λi(012). |D∗

12/D12| = 4 and the four elements
of D∗

12/D12 are Λi(012) (i = 0, 1, 2, 3). As A(a)0-modules,

A(a)0 ∼= VΛ0(012), A(a)1 ∼= VΛ2(012), A(a)0tw
∼= VΛ2(012), A(a)1tw

∼= VΛ3(012). (6.43)

As a result, V f♮ ∼= VD+
12

as VOSAs, where D+
12 := D12 ⊔ (1

2
1⃗ + D12) is the unique self-dual

positive-definite lattice of rank 12 without vectors of squared length 1. Since D+
12
∼= D12 ⊔

(1
2
(−1, 1, . . . , 1) +D12), we can see V s♮ ∼= VD+

12

∼= V f♮. (Remark ends.)

6.2.2 Conway Group Action

The SemiSpin(24)-action on V f♮

We focus on SO(24) = SO(Λ24⊗ZR) ⊂ SO(a), and its double cover Spin(24) = Spin(Λ24⊗Z

R) ⊂ Spin(a).
In general, if n is a multiple of 4, then the center36 of Spin(n) is Z2 ×Z2

∼= ⟨−1Spin(n)⟩ × ⟨z⟩.
The quotient Spin(n)/⟨−1Spin(n)⟩ is isomorphic to SO(n), whereas the quotient Spin(n)/⟨z⟩ is
another group called the semi-spin group SemiSpin(n), not isomorphic to SO(n) except for n = 8.

Recall that Spin(24) acts on the whole A(a)⊕ A(a)tw. Since the action of z on V f♮ is trivial,
the Spin(24)-action on V f♮ reduces to the action by the quotient Spin(24)/⟨−z⟩ ∼= SemiSpin(24).

Spin(24) ↷ A(a)⊕ A(a)tw

SemiSpin(24) ↷ V f♮ SO(24) ↷ A(a)

/⟨z⟩ /⟨−1Spin(24)⟩

(6.45)
36The center of Spin(n) is [Bin13, Ch. 8]

Z(Spin(n)) =


Z2
∼= ⟨−1Spin(n)⟩ (n is odd),

Z4
∼= ⟨z⟩ (n ≡ 2 mod 4),

Z2 × Z2
∼= ⟨−1Spin(n)⟩ × ⟨z⟩ (n ≡ 0 mod 4).

(6.44)
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The Co1-action on V f♮

Take the Conway group Co0 = Aut(Λ24) ⊂ SO(24).

Proposition 6.3 ([DMC14, Prop. 3.1]). There is a lift Ĝ ⊂ Spin(24) of Co0 ⊂ SO(24) such that
Ĝ is isomorphic to Co0, and such a lift is unique.

Proof. The existence of Ĝ ∼= Co0 is due to the fact that the Schur multiplier H2(Co0;Z) is
trivial [Gri74, §9], and Co0 is a perfect group37 H1(Co0;Z) = 0.

We can see the uniqueness as follows. According to the Co1 page of [WWT+], Co0 is gen-
erated by two elements A,B such that38 (ABABABABBABABBABB)33 = 1 and B3 = 1.
Since these relations contain odd numbers of A and B respectively, these relations determine
which of the two lifts ±Â ∈ Spin(24) of A is the generator Â of Ĝ ⊂ Spin(24), and which of
±B̂ is the generator as well.

We take an orthonormal basis ψ1, . . . , ψ24 of Λ24 ⊗Z R, and introduce the polarization a =

a−⊕a+ as in (6.17). This determines which of the two lifts of−1SO(24) ∈ SO(24) is z ∈ Spin(24);
the other one is −z. Since −1SO(24) ∈ Co0, one of ±z is contained in Ĝ, and the other is not.
Recalling (6.31) z = ψ1 · · ·ψ24, we can rename ψ1 and ψ2 so that z ∈ Ĝ. In this way, we always
assume that we take the orthonormal basis of Λ24 ⊗Z R and the polarization such that z ∈ Ĝ.

Since the action of z on V f♮ is trivial, the action of Ĝ ⊂ Spin(24) on V f♮ reduces to the action
by the quotient Ĝ/⟨z⟩ ∼= Co1 ⊂ SemiSpin(24).

We will also write Ĝ as Co0 when there is no risk of confusion.

Co0 ⊂ Spin(24) ↷ A(a)⊕ A(a)tw

Co1 ⊂ SemiSpin(24) ↷ V f♮ Co0⊂ SO(24) ↷ A(a)

/⟨z⟩ ∼=

(6.46)

Remark 6.4. On V s♮, the action of −z is trivial, but the action of z is not. So we can say that
the action of Spin(24) reduces to the action of Spin(24)/⟨−z⟩ ∼= SemiSpin(24), but since −z ̸∈
Co0 ⊂ Spin(24), the action of Co0 does not reduce to the action of Co1. In particular, V f♮ and
V s♮ are isomorphic as VOSAs, but they are not as Co0-modules. (Remark ends.)

37 A group G is said to be perfect if its abelianization Gab := G/[G,G] is trivial. Since the only normal subgroups
of Co0 are the trivial ones 1, Co0, and its center Z2 satisfying Co0/Z2

∼= Co1, it is obvious that Co0 is perfect.
Using Gab ∼= H1(G;Z), we have H1(Co0;Z) = 0. By applying H1(Co0;Z) = 0 and the trivial Schur multiplier
H2(Co0;Z) = 0 to the universal coefficient theorem, which states 0 → ExtZ(H1(G;Z);A) → H2(G;A) →
HomZ(H2(G;Z);A) → 0 is exact, we have H2(Co0;Z2) = 0. This means any extension of Co0 by Z2 splits, and
hence there is a group-homomorphic lift of Co0 ⊂ SO(24) to Spin(24).

38The convention of [WWT+] is the right action, so if we use A,B introduced in (2.46, 2.47) which act on column
vectors in Z24 from the left, we have to reverse the order of the multiplications in these relations. Note that the
Version 3 webpage https://brauer.maths.qmul.ac.uk/Atlas/v3/spor/Co1/ is not maintained, and there is a typo which
lacks the last B as “(ABABABABBABABBAB)33 = 1,” when accessed November 9th, 2025. Instead, the
Version 2 webpage https://brauer.maths.qmul.ac.uk/Atlas/spor/Co1/ is maintained when accessed, and presents the
correct relation.
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6.3 Conway Moonshine

Recall that V f♮ = A(a)0 ⊕ A(a)0tw, and states in A(a)0 have integer weights, whereas those in
A(a)0tw have half-integer weights. In particular, the weight-3

2
subspace of A(a)0tw is

211
+ := SpanC{(even number of Ψi(0)’s)|0⟩R} ⊂ A(a)0tw. (6.47)

This 211
+ and

211
− := SpanC{(odd number of Ψi(0)’s)|0⟩R} ⊂ A(a)1tw, (6.48)

are called the chiral representations or the Weyl spinor representations of Spin(24).
We have seen that Co1 ⊂ SemiSpin(24) acts on V f♮. As a Co1-module, this weight-3

2
subspace

211
+ decomposes into irreducible modules as [DMC14, proof of Prop. 4.4]

211
+ = 1⊕ 276⊕ 1771, (6.49)

where 1 is the trivial representation, whose states are invariant under the Co1-action. Moreover, a
suitably scaled basis τ of this Co1-invariant subspace 1 constitutes the supercurrent of an N = 1

superconformal algebra (4.22, 4.23) in V f♮ [DMC14, Prop. 4.4].
Conversely, it is proved [Dun07, Thm. 4.11] that the group AutN=1(V

f♮) of all the automor-
phisms of the VOSA V f♮ preserving this N = 1 structure is precisely isomorphic to the Conway
group Co1. To summarize,

Theorem 6.5 ([Dun07, Thm. 4.11]). The VOSA V f♮ admits an N = 1 structure such that
AutN=1(V

f♮) ∼= Co1.

Furthermore, its uniqueness is also known as follows, although we do not go into the details.

Theorem 6.6 ([DMC14, Thm. 4.5]). Let V be a self-dual C2-cofinite rational VOSA of CFT type,
with central charge 12 and without weight-1

2
states V 1

2
= 0. Then V is isomorphic to V f♮ as a

VOSA.

In particular, V in this Theorem 6.6 admits an N = 1 structure such that AutN=1(V ) ∼= Co1.
Of course, we can see the appearance of representation dimensions of Co1 in the coefficients

of the partition function of V f♮ [Dun07, Eq. (1.0.2)]

TrV f♮qL0− 12
24 =

ΘE8(τ)η(τ)
8

η(τ/2)8η(2τ)8
− 8 (6.50)

= q−
1
2 (1 + 276q + 211q

3
2 + 11202q4 + 49152q

5
2 + · · · ), (6.51)

where 276 is the smallest nontrivial irreducible representation dimension of Co1, 211 = 1+276+

1771 as in (6.49), 11202 = 1+276+299+1771+8855, and so on. Since the Co1-action preserves
the N = 1 superconformal algebra, we will still see the representation dimensions of Co1 even if
we decompose the partition function into N = 1 superconformal algebra characters.
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Now, we can see that the three important sporadic groups M, Co1, and M24 can be realized as
automorphism groups of the following objects.

Aut algebraic object VOA
M the Griess algebra B♮ the (bosonic) VOA V ♮

Co1 the (quotient of) Leech lattice Λ24/{±1} the N = 1 VOSA V f♮

M24 the Golay code G24 ?

(6.52)

Remark 6.7. Among the algebraic objects listed above (6.52), we have already mentioned the
uniqueness of G24, Λ24, and V f♮. The Golay code G24 is the unique binary code of length 24,
dimension 12, and minimal nonzero weight 8 (Section 2.2.1). The Leech lattice Λ24 is the unique
even self-dual lattice of rank 24 and without vectors of squared length 2 (Section 2.3.1). Duncan’s
module V f♮ is the unique VOSA of central charge 12 and without weight-1

2
states (Theorem 6.6).

As mentioned in Section 2.4, the Griess algebraB♮ is the weight-2 subspace (V ♮)2 of the mon-
ster VOA V ♮. The uniqueness of the monster VOA V ♮ as a VOA of central charge 24 and without
weight-1 states is still an open problem, called the Frenkel–Lepowsky–Meurman uniqueness con-
jecture. See [DGL07] for a partial result. One interest thing is that VOAs of central charge 24 with
weight-1 states V1 ̸= 0 are known to be uniquely determined from the structure of the weight-1
subspace V1, and already classified as 70 VOAs; see for example [vELMS21,Lam23]. Therefore,
if the uniqueness of the monster VOA is proved, then the proof of the list of 71 VOAs of central
charge 24 conjectured by Schellekens [Sch93] will be completed. (Remark ends.)
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7 Mathieu Moonshine
A K3 surface is a complex-two-dimensional Calabi–Yau manifold. More precisely,39 a complex-
two-dimensional compact Kähler manifold X is said to be a K3 surface if its canonical bundle is
trivial, and it has the Hodge number h0,1(X) = 0. It is known that any K3 surfaces are diffeo-
morphic, but their isomorphism classes as complex manifolds are not unique. The second integral
cohomology40 H2(X;Z) of a K3 surface together with the symmetric bilinear form defined by the
cup product is a lattice of signature (3, 19) and isometric to41 II⊕3

1,1 ⊕ (−E8)
⊕2. The isomorphism

classes of K3 surfaces are parametrized by the real-two-dimensional plane in H2(X;R), specified
by the nowhere-vanishing holomorphic 2-form ω on X . The space of all the isomorphism classes
of K3 surfaces is called the moduli space of K3 surfaces. See for example [Kon18,Kon20,Asp96]
for more details.

We can consider the supersymmetric non-linear sigma model (full or non-chiral two-dimensional
SCFT) with its target space being a K3 surface X . We call it a K3 sigma model for short. It has
dimRX bosons and fermions, so the central charge is c = c̃ = 4 × (1 + 1

2
) = 6. Thanks to the

hyperKähler structure of the K3 surface, it has N = (4, 4) supersymmetries. Hence, the elliptic
genus Z(K3)

ell (τ, z) (see Section 3.4) of a K3 sigma model is a weak Jacobi form of weight 0 and
index 1. From Theorem 3.4, such a weak Jacobi form is φ0,1(τ, z) up to scalar multiplication, and
it was calculated in [EOTY89] as

Z
(K3)
ell (τ, z) = 2φ0,1(τ, z) = 8

(
θ2(τ, z)

2

θ2(τ, 0)2
+
θ3(τ, z)

2

θ3(τ, 0)2
+
θ4(τ, z)

2

θ4(τ, 0)2

)
. (7.1)

This elliptic genus is independent of the choice of the target K3 surface, or equivalently, constant
over the moduli space.

Recall that the elliptic genus is a (−1)F -inserted partition function of the left-moving R sectors
coupling to the right-moving Ramond vacua. Since the left-moving part of a K3 sigma model has
the N = 4 supersymmetry, we can decompose the elliptic genus Z(K3)

ell (τ, z) into the (−1)F -
inserted characters of irreducible Ramond representations of the N = 4 superconformal algebra
of central charge c = 6. Such irreducible characters are labeled by the conformal weight h and
the spin l (with respect to the ŝu(2) c

6
algebra consisting of the three supercurrents) of the highest

weight state, and classified into

• the massless characters chN=4
(0)h,l(τ, z) with h = 1

4
and l = 0, 1

2
,

39There are several different definitions of a Calabi–Yau manifold. If we define it as a compact Kähler manifold X
with trivial canonical bundle, then two-dimensional Calabi–Yau manifolds are only complex-2-tori and K3 surfaces.
Between them, K3 surfaces can be specified by the condition h0,1(X) = 0 as in the main text, or by the condition
that the holonomy group is SU(2). (The holonomy of a torus is trivial.) So some literature uses the definition of a
Calabi–Yau manifold containing the condition that the holonomy is SU(n) where n is the complex dimension.

40In the notation of footnote 1, H2(X;Z) in the main text here should be written as H2
top(X;Z).

41II1,1 is the even self-dual lattice of signature (1, 1). It can be written as II1,1 = (Z2, q) where the symmetric

bilinear form q has the matrix form
(
0 1

1 0

)
. −E8 denotes theE8 lattice whose symmetric bilinear form is multiplied

by −1, and hence of signature (0, 8).

76



• the massive characters chN=4
h,l (τ, z) with h = 1

4
+ Z>0 and l = 1

2
.

Their explicit formulae are derived in [ET88] (also reviewed in [EOT10]) as

chN=4
(0) 1

4
,0(τ, z) =

θ1(τ, z)
2

η(τ)3
µ(τ, z), µ(τ, z) :=

−
√
−1y1/2

θ1(τ, z)

∑
l∈Z

(−1)lylql(l+1)/2

1− yql
, (7.2)

chN=4
h, 1

2
(τ, z) =

θ1(τ, z)
2

η(τ)3
qh−

3
8 . (7.3)

chN=4
(0) 1

4
, 1
2
(τ, z) can be derived from

chN=4
1
4
, 1
2
(τ, z) = 2 chN=4

(0) 1
4
,0(τ, z) + chN=4

(0) 1
4
, 1
2
(τ, z), (7.4)

where we allowed h = 1
4

for the massive character (7.3) as chN=4
1
4
, 1
2
(τ, z) = θ1(τ,z)2

η(τ)3
q−

1
8 .

As a result, the K3 elliptic genus Z(K3)
ell (τ, z) is decomposed as [Oog89, EOT10]

Z
(K3)
ell (τ, z) = 20 chN=4

(0) 1
4
,0(τ, z)− 2 chN=4

(0) 1
4
, 1
2
(τ, z) + 2

∞∑
n=1

Anch
N=4
n+ 1

4
, 1
2
(τ, z) (7.5)

= 24 chN=4
(0) 1

4
,0(τ, z)− 2 chN=4

1
4
, 1
2
(τ, z) + 2

∞∑
n=1

Anch
N=4
n+ 1

4
, 1
2
(τ, z), (7.6)

where

n 1 2 3 4 5 6 7 8 9 · · ·
An 45 231 770 2277 5796 13915 30843 65550 132825 · · · (7.7)

In 2010, Eguchi, Ooguri, and Tachikawa [EOT10] observed that these coefficients can be
written as simple sums of irreducible representation dimensions of the largest Mathieu group
M24. The 26 irreducible representation dimensions of M24 are, from the smallest one,

1, 23, 45, 45, 231, 231, 252, 253, 483, 770, 770,

990, 990, 1035, 1035, 1035, 1265, 1771, 2024,

2277, 3312, 3520, 5313, 5796, 5544, 10395.

So A1, . . . , A5 are directly the irreducible representation dimensions of M24, and

A6 = 3520 + 10395, (7.8)

A7 = 1771 + 2024 + 5313 + 5544 + 5796 + 10395. (7.9)

This observation by [EOT10] triggered the effort to construct a coherent theory analogous
to the monstrous moonshine, so-called the (K3) Mathieu moonshine. Recall from Section 5.1
that the McKay–Thompson series Jg(τ) is the character of g ∈ M represented on the moonshine
module V ♮, and in the language of physics, it is a twisted partition function twisted in the temporal
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direction. The analogue of the McKay–Thompson series, that is, the character ϕg(τ, z) of g ∈M24

instead of 1M24 in the elliptic genus Z(K3)
ell (τ, z) was calculated in [Che10, GHV10a, GHV10b,

EH10], and called the twining elliptic genus in [GHV10a, GHV10b]. In addition, the existence
of an M24-module which reproduces these twining elliptic genera as its characters was shown
in [Gan12]. The twisted partition functions twisted in both spatial and temporal directions, called
the twisted twining elliptic genera, were also calculated in [GPRV12]. Remarkably, their modular
transformation properties fit into the theory of anomaly of orbifold (Section F.1.2), and controlled
by a 3-cocycle in H3(M24; U(1)). This suggests that there exists an underlying VOA with M24

symmetry and the elliptic genus Z(K3)
ell (τ, z).

In spite of these pieces of evidence, such an underlying VOA has not yet been found, and
many mysterious aspects still remain. First, the geometric symmetry of any K3 surface is smaller
than the subgroup M23 of M24. More precisely, the following theorem is known.

Theorem 7.1 (Mukai [Muk88]). For a finite group G, the followings are equivalent.

(1) There exists a K3 surface X such that its automorphism group Autω(X) preserving the
nowhere-vanishing holomorphic 2-form ω on X contains G as a subgroup.

(2) G is a subgroup of M23, and as a subgroup of M24 acting on 24 points Ω24, the action of G
on Ω24 has at least 5 orbits in Ω24.

In the same spirit, the automorphism groups of K3 sigma models preserving the N = (4, 4)

superconformal algebra were studied in [GHV11], through a strategy similar to Kondō’s proof
[Kon98] of Mukai’s Theorem 7.1. They all turned out to be subgroups of the Conway group
Co1, but none of them are M24, or contain M24 as a subgroup. Instead, some of them are proper
subgroups of M24, and the others are not even subgroups of M24.

One proposal to resolve this problem was provided in [TW11, TW13a, TW13b]. Since the
elliptic genus Z(K3)

ell (τ, z) is constant over the moduli space of K3 surfaces, they glued the auto-
morphism groups of the K3 surfaces at three different points in the moduli space together, and
succeeded in constructing the action of a maximal subgroup 24 : A8 called the octad subgroup of
M24 on the first massive part 45 ⊕ 45 corresponding to the term 2A1ch

N=4
5
4
, 1
2
(τ, z) in Z(K3)

ell (τ, z)

(7.5). This idea is referred to as symmetry-surfing. Their action of 24 : A8 in fact coincides with
the M24-action restricted to 24 : A8 on the irreducible representation 45 of M24. Its application to
the higher-weight parts is discussed in [GKP16].

Another possible way to circumvent the situation is to loosen the condition on the automor-
phism group that it should preserve theN = (4, 4) superconformal algebra. In fact, we only need
the N = (4, 1) supersymmetry to consider the elliptic genus and its decomposition into the irre-
ducible characters of the left-movingN = 4 superconformal algebra, so the automorphism group
preserving only the N = (4, 1) supersymmetry is still useful. For example, a K3 sigma model
with 28 : M20 symmetry, which is one of the maximal symmetries given in [GHV11] (and not a
subgroup ofM24), was constructed in [GTVW13]. This K3 sigma model was further studied in re-
lation to quantum error-correcting codes in [HM20], and they also showed that the automorphism
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group preserving the N = (4, 1) superconformal algebra is indeed larger than 28 : M20, although
it does not contain M24. Of course, we may seek an N = (4, 1) SCFT with M24 symmetry and
elliptic genus Z(K3)

ell (τ, z) (so the left-moving central charge should be 6), other than K3 sigma
models.

As another approach, the relation to Duncan’s module (Section 6) is also being explored. As
a naive observation, since a K3 sigma model has central charge (c, c̃) = (6, 6), if we "reflect" the
right-moving part to the left-moving part, then we obtain a chiral SCFT with central charge c = 12,
which is the same central charge as Duncan’s module. In fact, under an appropriate procedure
called reflection, it was shown [DMC15,TW17] that the reflection of the specific K3 sigma model
constructed in [GTVW13] is isomorphic to Duncan’s module as a VOSA. As reviewed in Section
6.3, Duncan’s module admits an N = 1 superconformal algebra, and the automorphism group
preserving it is the Conway group Co1, which contains M24 as a subgroup. In addition, it is
known that Duncan’s module also admitsN = 2 andN = 4 superconformal algebras [CDD+14]
(see also Section 3.4). However, the automorphism group of Duncan’s module preserving its
N = 2 and N = 4 superconformal algebras are only M23 and M22, respectively [CDD+14].
It was also pointed out in [Gan12] that if the character of M24 appearing in the elliptic genus
Z

(K3)
ell (τ, z) is a restriction of a virtual character (a signed sum of irreducible characters) of some

representation of Co1 or Co0, then such a representation of Co1 or Co0 must have an excessively
large dimension. (For example, the smallest virtual representation of Co0 which restricts to the
representation 45⊕ 45 of M24 has dimension over 100 billion.)

Lastly, we mention that, as a generalization of the Mathieu moonshine, the umbral moonshine
was proposed in [CDH12,CDH13]. It relates a certain quotient Aut(L)/Weyl(L) of the isometry
group to a mock modular form, for each Niemeier lattice L except for the Leech lattice Λ24, and
contains the K3 Mathieu moonshine as a case of L = (A1)

24. The result of [Gan12] for the K3
Mathieu moonshine was generalized to the other cases of the umbral moonshine by [DGO15].
For more on Mathieu moonshine and its recent developments, see for example [Tac12, DGO14,
Car17, HHP22, JF20] and references therein.
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Part III

Appendices
A Group Extension
In this Section A, we give an elementary introduction to group extensions and a few related topics.
In Section A.1, we review basic notions of group extensions following [Bro82, Ch. IV], and see
that the equivalence classes of group extensions of a group G by a G-module N are in one-to-one
correspondence with the cohomology classes of the second group cohomology H2(G,N). In the
next Section A.2, we focus on central extensions of abelian groups, and establish another one-to-
one correspondence with commutator maps in the case of free abelian groups, following [FLM88,
§5.2]. When a central extension of a free abelian group L is by Z2, we can further consider
additional information, quadratic forms, and corresponding extensions of L/2L by Z2. This is of
particular importance in the construction of the Z2-twisted sector of a lattice VOA, so reviewed
in Section A.3. The last Section A.4 is a review of a certain theorem [FLM88, Prop. 5.4.1] on
the automorphism group of a central extension, which plays a vital role in the description of the
automorphism group of a lattice VOA in Section 5.2.3.

A.1 Group Extensions and Group Cohomology

An extension of a group G by a group N is a short exact sequence of groups and homomorphisms

1→ N
i→ Ĝ

π→ G→ 1. (A.1)

(Be aware that some literature calls it an extension of N by G.) When there is no risk of confusion
in the homomorphisms constituting the short exact sequence, we only say that Ĝ is an extension
of G by N . (But note that the equivalence of group extension, defined later, classifies not only Ĝ,
but also the whole short exact sequence.) We also use the notation N.G for any extension of G by
N . Since i(N) is the kernel of π, N can be regarded as a normal subgroup of Ĝ, and the quotient
group Ĝ/i(N) is isomorphic to G.

Let us take a set-theoretical section (not necessarily a group homomorphism) s : G → Ĝ.
Since s(g)s(g′)s(gg′)−1 ∈ kerπ = i(N) for g, g′ ∈ G, we can define a function ϵ : G×G → N

which measures how s failures to be a homomorphism by

s(g)s(g′) = i(ϵ(g, g′))s(gg′). (A.2)

To look into the structure of Ĝ, we use the bijectionN×G→ Ĝ ; (n, g) 7→ i(n)s(g). Recalling
that i(N) is a normal subgroup of Ĝ, we can define the action of h ∈ Ĝ on N by

φ̂h(n) = i−1(hi(n)h−1), (A.3)
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and then the multiplication law of Ĝ can be calculated as

i(n)s(g) · i(n′)s(g′) = i(n · φ̂s(g)(n′) · ϵ(g, g′))s(gg′). (A.4)

This multiplication law (i.e. the group structure of Ĝ) becomes simpler in the following cases:

• If we can take a section s which is a group homomorphism (i.e. the short exact sequence
(A.1) splits), then the cocycle becomes trivial ϵ(g, g′) = 1N . In addition, we can define a
G-action σ on N by σg := φ̂s(g). As a result, Ĝ is isomorphic to the semidirect product
N ⋊σ G, and it is also denoted by N : G. In particular, G can be regarded as a subgroup of
Ĝ by s.

– Moreover, if the G-action σ on N is trivial, then Ĝ is isomorphic to the direct product
N ×G.

• If N is abelian, then for a given g ∈ G, any element h ∈ Ĝ such that π(h) = g defines the
same action φ̂h on N , so the Ĝ-action φ̂ reduces to a G-action φ on N .

– Moreover, if (and only if) i(N) is in the center of Ĝ, the G-action φ becomes trivial.
In this case, Ĝ is called a central extension.

We also use the notation N ˙G for an extension Ĝ such that the short exact sequence (A.1) does
not split.

In the following, we assume N is abelian. An abelian group on which a group G acts is called
a G-module. Since there is the G-action φ on N , N is a G-module.

From the associativity (s(g)s(g′))s(g′′) = s(g)(s(g′)s(g′′)), the function ϵ turns out to be an
N -valued 2-cocycle:

ϵ(g, g′)ϵ(gg′, g′′) = φg(ϵ(g
′, g′′))ϵ(g, g′g′′). (A.5)

If we take another section s′, then the cocycle ϵ′ for it differs from ϵ by only coboundary. To see
it, we define ζ : G→ N as the difference of s(g) and s′(g):

s′(g) = i(ζ(g))s(g). (A.6)

Then we can calculate ϵ′ based on the definition (A.2) as

ϵ′(g, g′) = ϵ(g, g′)φg(ζ(g
′))ζ(gg′)−1ζ(g), (A.7)

which shows that ϵ′ and ϵ differ by the coboundary dζ . Conversely, if a cocycle ϵ′ is cohomologous
to the cocycle ϵ of the section s as ϵ′ = ϵdζ, then ϵ′ is the cocycle of the section s′ such that
s′(g) = i(ζ(g))s(g).
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Two extensions 1 → N
i→ Ĝ

π→ G → 1 and 1 → N
i′→ Ĝ′ π′

→ G → 1 are said to be
equivalent if there exists a homomorphism ψ : Ĝ→ Ĝ′ such that the diagram

Ĝ

ψ

��

π

��
1 // N

i
>>

i′   

G // 1

Ĝ′
π′

??

(A.8)

commutes. Such ψ is an isomorphism by the short five lemma.42 The difference of the cocycle
ϵ for a section s : G → Ĝ and the cocycle ϵ′ for a section s′ : G → Ĝ′ is again a coboundary,
because ϵ is also the cocycle for the section ψ ◦ s : G → Ĝ′. Note that two extensions can be
non-equivalent even if Ĝ and Ĝ′ are isomorphic as groups.43 In this sense, the equivalence of
group extension classifies not only Ĝ, but also how N and G are incorporated in it.

So far, for a given G-module N , we have established a map

♭ :

{
extensions of G by N

compatible with the action G↷ N

}
/equivalence→ H2(G,N). (A.9)

We can construct a map ♯ in the inverse direction of (A.9) as follows. For a given G-module
N and a 2-cocycle ϵ : G × G → N , we can construct a group extension Ĝϵ as a set N × G with
the multiplication44

(n, g) · (n′, g′) = (n · g(n′) · ϵ(g, g′), gg′), (A.10)

together with group homomorphisms

i : N → Ĝϵ ;n 7→ (n · ϵ(1G, 1G)−1, 1G), (A.11)

π : Ĝϵ → G ; (n, g) 7→ g, (A.12)

constituting the short exact sequence.

42For the short five lemma to be applied, ψ should be a homomorphism, not just a map. In fact, for any two
extensions Ĝ, Ĝ′ of G by N , there exists a map ψ such that the diagram (A.8) commutes (e.g. just i(n)s(g) 7→
i′(n)s′(g) for sections s : G→ Ĝ and s′ : G→ Ĝ′ normalized as in (A.21)), but it is of course not an isomorphism
in general.

43For example, for additive groups G = Z2 × Z2 and N = Z2, (i) Ĝ = Z4 × Z2 with i(1) = (2, 0) and
π((a, b)) = (a, b) mod 2, and (ii) Ĝ = Z4 × Z2 with i(1) = (2, 0) and π((a, b)) = (b, a) mod 2 are inequivalent
extensions.

44Under this multiplication, the identity element of Ĝϵ is (ϵ(1G, 1G)
−1, 1G), and the inverse of (n, g) is

(ϵ(1G, 1G)
−1g−1(n−1)ϵ(g−1, g)−1, g−1). We can check them by using ϵ(1G, g) = ϵ(1G, 1G), ϵ(g, 1G) =

g(ϵ(1G, 1G)), and ϵ(g, g−1)ϵ(1G, g) = g(ϵ(g−1, g))ϵ(g, 1G), which all follow from the cocycle condition (A.5).
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For another 2-cocycle ϵ′, if it differs from ϵ by the coboundary dζ as in (A.7), then

ψ : Ĝϵ → Ĝϵ′ ; (n, g) 7→ (nζ(g)−1, g) (A.13)

defines an homomorphism to show the equivalence of Ĝϵ and Ĝϵ′ . Therefore, we have established
the map ♯ in the inverse direction of (A.9).

In fact, ♭ and ♯ are the inverse of each other. To see it, we first note that any 2-cocycle ϵ satisfies

ϵ(1G, g) = ϵ(1G, 1G) for any g ∈ G, (A.14)

which follow from the cocycle condition (A.5). We also have

s(1G) = i(ϵ(1G, 1G)), (A.15)

from (A.2), for any section s : G→ Ĝ of an extension and the cocycle ϵ for it.
To see ♯◦ ♭ is an identity map, for a given extension Ĝ, take a section s : G→ Ĝ and construct

the extension Ĝϵ from the cocycle ϵ for s. Then it is equivalent to the original extension Ĝ by

ψ : Ĝϵ → Ĝ ; (n, g) 7→ i(n)s(g). (A.16)

The most nontrivial part is ψ ◦ (i for Ĝϵ) = (i for Ĝ), which follows from

ψ((nϵ(1G, 1G)
−1, 1G)) = i(nϵ(1G, 1G)

−1)s(1G)
(A.15)
= i(n). (A.17)

To see ♭◦ ♯ is an identity map, starting from a given cocycle ϵ, construct the extension Ĝϵ from
it. Then the section s : G→ Ĝϵ ; g 7→ (1N , g) gives back the cocycle ϵ because

s(g)s(g′) = (ϵ(g, g′), gg′) = (ϵ(g, g′)ϵ(1G, gg
′)−1, 1G) · (1N , gg′) (A.18)

(A.14)
= (ϵ(g, g′)ϵ(1G, 1G)

−1, 1G) · (1N , gg′) = i(ϵ(g, g′))s(gg′). (A.19)

To summarize the above discussions, we finally obtained the following theorem.

Theorem A.1. For a group G and a G-module N , there exists a one-to-one correspondence{
extensions of G by N

compatible with the action G↷ N

}
/equivalence

♭

⇄
♯
H2(G,N). (A.20)

Lastly, we mention the normalization of sections and cocycles. If we take a section s : G→ Ĝ

satisfying the normalization condition

s(1G) = 1Ĝ, (A.21)

then the cocycle ϵ for it satisfies the normalization condition

ϵ(1G, 1G) = 1N . (A.22)

Therefore, by Theorem A.1, any cohomology class in H2(G,N) has at least one normalized
cocycle. In fact, we can construct it explicitly; for any cocycle ϵ′, if we define ζ(g) := ϵ′(g, g)−1,
then the modified cocycle ϵ := ϵ′ · dζ satisfies the normalization (A.22). Hence, in many cases,
we can restrict our attention to the normalized sections and cocycles, without loss of generality.
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A.2 Central Extensions of Free Abelian Group and Commutator Maps

Let G be an abelian group and 1→ N
i→ Ĝ

π→ G→ 1 be a central extension of G, that is, N is a
G-module by the trivial G-action. Now, any commutator [h, h′] := hh′h−1h′−1 of h, h′ ∈ Ĝ is in
kerπ = i(N), and hence in the center of Ĝ.

If we take a section s : G→ Ĝ, we can define a function c : G×G→ N by

c(g, g′) = i−1([s(g), s(g′)]). (A.23)

If we take another section s′ : G → Ĝ, then we have [s′(g), s′(g′)] = [s(g), s(g′)], which follows
from the fact that s′(g)s(g)−1 is in ker π = i(N) and hence in the center of Ĝ. Therefore, the
function c does not depend on the choice of the section. This c is called the commutator map
associated with the central extension.

The properties of the commutator, [h, h] = 1 and [h, h′] = [h′, h]−1, respectively translates to
the alternating property

c(g, g) = 1N , (A.24)

and the antisymmetric property

c(g, g′) = c(g′, g)−1, (A.25)

of the commutator map c.
From the fact that any commutator of Ĝ is in the center of Ĝ, we also have the properties

[hh′, h′′] = [h, h′′][h′, h′′], (A.26)

[h, h′h′′] = [h, h′][h, h′′], (A.27)

for any h, h′, h′′ ∈ Ĝ. They translates to the bilinearity

c(gg′, g′′) = c(g, g′′)c(g′, g′′), (A.28)

c(g, g′g′′) = c(g, g′)c(g, g′′), (A.29)

of the commutator map c. Under the bilinearity (A.28, A.29), the antisymmetric property (A.25)
follows from the alternating property (A.24).45

In terms of the cocycle ϵ of the section s, defined in (A.2), the commutator map is

c(g, g′) = ϵ(g, g′)ϵ(g′, g)−1. (A.30)

This (A.30) holds even if we replace ϵ with another cocycle ϵ′ cohomologous to ϵ, because such
ϵ′ is, as we have seen around (A.7), just a cocycle for another section. (Or, we can explicitly
calculate ϵ′(g, g′)ϵ′(g′, g)−1 = ϵ(g, g′)ϵ(g′, g)−1.) Therefore, (A.30) establishes a map

♭c : H
2(G,N)→

{
alternating bilinear maps

c : G×G→ N

}
(A.31)

45The converse (“antisymmetric⇒ alternating” under bilinearity) holds if N does not have order-2 elements.
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for abelian groups G and N , where G acts on N trivially.

To obtain the inverse ♯c of this map ♭c, we further assume that G be a free abelian group of
finite rank r, and take a Z-basis e1, . . . , er of G. For a given alternating Z-bilinear map c :

G×G→ N , we define a Z-bilinear map ϵc : G×G→ N by the bilinear extension of

ϵc(ei, ej) =

{
c(ei, ej) (i > j),

1N (i ≤ j).
(A.32)

Since the action of G on N is trivial in the current situation, a Z-bilinear map G × G → N is
automatically a 2-cocycle. Now, this cocycle ϵc satisfies (A.30) for the given c. Therefore, c 7→ ϵc
establishes a map

♯c :

{
alternating Z-bilinear maps

c : G×G→ N

}
→ H2(G,N) (A.33)

for a free abelian group G of finite rank and an abelian group N , and ♭c ◦ ♯c is an identity map.
To see that ♯c ◦ ♭c is also an identity map, we start from a given cocycle ϵ, consider the com-

mutator map cϵ for ϵ as in (A.30), and show that the cocycle ϵcϵ constructed from this cϵ as in
(A.32) is in the same cohomology class as the original cocycle ϵ. Let Ĝϵ be the central extension
constructed from ϵ as in (A.10). Recall that the cocycle for the section s : G→ Ĝϵ ; g 7→ (1N , g)

is ϵ itself, and hence the commutator map associated with Ĝϵ is of course cϵ. Take another sec-
tion s′ : G → Ĝϵ as follows: set s′(e1), . . . , s′(er) to any element satisfying π(s′(ei)) = ei, say
s′(ei) = s(ei), and for a general element ek11 · · · ek

r

r ∈ G, define

s′(ek
1

1 · · · ek
r

r ) = s′(e1)
k1 · · · s′(er)k

r

. (A.34)

This s′ : G → Ĝϵ is well-defined because G is a free abelian group, that is, torsion-free.46 Note
that this s′ is not necessarily linear, or a homomorphism, because s′(ei)’s are not necessarily
commutative. Then the cocycle ϵ′ for this section s′ coincides with ϵcϵ , because

s′(ek
1

1 · · · ek
r

r ) · s′(el11 · · · el
r

r ) (A.35)

= s′(e1)
k1 · · · s′(er)k

r · s′(e1)l
1 · · · s′(er)l

r

(A.36)

= s′(e1)
k1 · · · s′(er−1)

kr−1 · s′(e1)l
1 · · · s′(er)k

r+lri(
∏
r>j

cϵ(er, ej)
krlj) (A.37)

= · · · = s′(e1)
k1+l1 · · · s′(er)k

r+lri(
∏
i>j

cϵ(ei, ej)
kilj) (A.38)

= s′(ek
1+l1

1 · · · ekr+lrr )i(ϵcϵ(e
k1

1 · · · ek
r

r , e
l1

1 · · · el
r

r )), (A.39)

46 If G is a finitely generated abelian group, where torsion is allowed, then we cannot take a well-defined section
s′ in the form of (A.34) in general, and in particular, we cannot transform (A.38) into (A.39). In fact, there are
inequivalent extensions of G with the same commutator map in this case; see Remark A.6 for example. If we further
assume that N is a divisible group, then we can take a well-defined section s′ in the form of (A.34) even if G
has a torsion part, and therefore we can still establish the one-to-one correspondence with commutator maps. For
example, [Tam00, Prop. 2.6] deals with the case of N = k×, which is the multiplicative group of a field k.
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where in the second equation, we used the fact that the commutator map cϵ does not depend on the
choice of the section s or s′, as we saw above. Therefore, ϵ and ϵcϵ are the cocycles of the different
sections s and s′ of the same extension Ĝϵ, and hence they differ only by the coboundary, as we
have seen around (A.7).

We finally obtained the following theorem.

Theorem A.2. For a free abelian group G of finite rank and an abelian group N , there exist
one-to-one correspondences

{central extensions of G by N} /equivalence
♭

⇄
♯
H2(G,N) (A.40)

♭c
⇄
♯c

{
alternating Z-bilinear maps

c : G×G→ N

}
, (A.41)

where in H2(G,N), N is regarded as a G-module by the trivial G-action.

A.3 Central Extension of Free Abelian Group by Z2 and Quadratic Forms

A central extension of a free abelian group, say a lattice L, by Z2 plays a major role in discussions
of a lattice VOA. In this Section A.3, following discussions around [FLM88, Prop. 5.3.4], we will
see that we can induce central extensions of L/2L by Z2 by specifying quadratic forms, which is
particularly important when we construct the Z2-twisted sector in Section 5.3.1.

Let L be a free abelian group of finite rank r, and we regard it as an additive group, that is, the
operation is denoted by + and the identity element is 0. Let L̂ be the central extension of L by
Z2 = ⟨κ | κ2 = 1⟩

1→ Z2
i→ L̂

π→ L→ 0, (A.42)

specified by a commutator map c : L×L→ Z2. Since c is bilinear, c induces c̃ : L/2L×L/2L→
Z2. c̃ is also alternating and bilinear. L/2L is isomorphic to (F2)

r as an F2-linear vector space.
In general, for a given alternating bilinear form c̃ : (F2)

r × (F2)
r → Z2 = ⟨κ | κ2 = 1⟩, there

is a map q̃ : (F2)
r → Z2 such that

c̃(x, y) = q̃(x+ y)q̃(x)−1q̃(y)−1, (A.43)

and the set of all such maps is in the form of {q̃η | η : (F2)
r → Z2 linear} [FLM88, Remark

5.3.2].47 Conversely, a map q̃ : (F2)
r → Z2 such that the map c̃ : (F2)

r × (F2)
r → Z2 defined

by (A.43) is bilinear is called a quadratic form, and c̃ is called the associated form of q̃. In such a
situation, c̃ is obviously alternating (or equivalently, symmetric in Z2) by the definition (A.43).

47 The proof of this statement is as follows. Take a F2-basis e1, . . . , er of (F2)
r, and set q̃(ei) (i = 1, . . . , r) as

arbitrary values of Z2. Define ϵ̃ : (F2)
r × (F2)

r → Z2 as the bilinear extension of (A.49) for c̃ and q̃ instead of c
and q. Then q̃(−) := ϵ̃(−,−) satisfies (A.43). The degrees of freedom in choosing the values of q̃(ei) (i = 1, . . . , r)
correspond to the multiplication of linear maps η : (F2)

r → Z2.
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Remark A.3. More generally, a quadratic form on a K-vector space V is a map q̃ : V → K such
that

q̃(tv) = t2q̃(v) (t ∈ K, v ∈ V ), (A.44)

and its associated form or polarization b̃ : V × V → K defined by

b̃(v, w) := q̃(v + w)− q̃(v)− q̃(w) (A.45)

is bilinear.
If the characteristic of the field K is not 2, then the quadratic forms and the symmetric bilinear

forms are in one-to-one correspondence under q̃ 7→ b̃; the converse b̃ 7→ q̃ is q̃(v) = 1
2
b̃(v, v). In

this case, the associated form is sometimes defined as

b̃′(v, w) :=
1

2
(q̃(v + w)− q̃(v)− q̃(w)) . (A.46)

Note that if we represent a symmetric bilinear form b̃′(v, w) as vTBw by a symmetric matrix B,
then the corresponding quadratic form q̃(v) is vTBv.

However, if the characteristic of K is 2, then this one-to-one correspondence does not hold. In
the special case K = F2, the condition (A.44) is always satisfied, and the definition of the quadratic
form reduces to the one we already defined before this Remark A.3. As mentioned above, there
are multiple quadratic forms with the same associated form, and they are parametrized by linear
maps η : V → F2. One explanation of this special property of F2 is that any linear map η

satisfies (A.44). Another explanation is that, over F2, a linear map η : V → F2 can be represented
as η(v) = vTdiag(η(e1), . . . , η(er))v with an F2-basis e1, . . . , er of V . Therefore, we can add
arbitrary linear maps η to a quadratic form to get another quadratic form with the same associated
form. The resulting quadratic form is q̃(v) = vT [ϵ̃(ei, ej)]i,jv in the language of footnote 47.
(Remark ends.)

Getting back to the c̃ : L/2L×L/2L→ Z2 induced from the commutator map c of the central
extension L̂ (A.42), let us take a quadratic map q̃ : L/2L→ Z2 with associated form c̃. Now, we
will show that a lift of 2L

Kq̃ := {i(q̃(k + 2L))k̂2 | k̂ ∈ L̂, k = π(k̂)} (A.47)

is in fact a subgroup of L̂ contained in the center of L̂.
Let q : L→ Z2 be the pullback (L→ L/2L) ◦ q̃ of q̃. Obviously we have

c(k, k′) = q(k + k′)q(k)−1q(k′)−1. (A.48)

By taking a Z-basis e1, . . . , er of L, we can construct a cocycle ϵ : L×L→ Z2 whose commutator
ϵ(k, k′)ϵ(k′, k)−1 coincides with c(k, k′), by the bilinear extension of

ϵ(ei, ej) =


c(ei, ej) (i > j),

q(ei) (i = j),

1 (i < j).

(A.49)

(Note that this construction of a cocycle can produce a different one from (A.32) in general.)
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Lemma A.4.

(1) q((t1 + t2)k) = q(t1k)q(t2k) for any t1, t2 ∈ Z and k ∈ L.

(2) ϵ(k, k) = q(k) for any k ∈ L.

Proof. (1) Since c is alternating and bilinear, c(t1k, t2k) = 1. Use it to (A.48).
(2) Let us write k =

∑
i k

iei. Using (1) and the bilinearity of c to the definition (A.49) of ϵ,
we have

ϵ(k, k) =
∏
i>j

c(kiei, k
jej)

∏
i

q(kiei). (A.50)

Then, using (A.48) and the bilinearity of c repeatedly,

ϵ(k, k) =
∏

i≥3,i>j

c(kiei, k
jej) · c(k2e2, k1e1)q(k1e1)q(k2e2) ·

∏
i≥3

q(kiei) (A.51)

=
∏

i≥3,i>j

c(kiei, k
jej) · q(k1e1 + k2e2) ·

∏
i≥3

q(kiei) (A.52)

=
∏

i≥4,i>j

c(kiei, k
jej) · c(k3e3, k1e1 + k2e

2)q(k1e1 + k2e2)q(k
3e3) ·

∏
i≥4

q(kiei) (A.53)

=
∏

i≥4,i>j

c(kiei, k
jej) · q(k1e1 + k2e2 + k3e3) ·

∏
i≥4

q(kiei) (A.54)

... (A.55)

= q(k1e1 + · · ·+ krer) (A.56)

= q(k). (A.57)

We take a section s : L → L̂ of (A.42) such that its cocycle is ϵ. Then, for any κms(k) ∈ L̂
(we omit i : Z2 → L̂),

q(π(κms(k)))(κms(k))2 = q(k)s(k)s(k) (A.58)

= q(k)ϵ(k, k)s(2k) (A.59)

= s(2k), (A.60)

where we used Lemma A.4 (2) in the last equation. As a result, Kq̃ defined in (A.47) can be
written as

Kq̃ = {s(2k) | k ∈ L}. (A.61)

In addition, since ϵ is bilinear, ϵ(2k, k′) = ϵ(k′, 2k) = 1. This shows that Kq̃ is a subgroup of L̂,
and it is in the center of L̂.
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Now, we have a central extension

1→ Z2
ι→ L̂/Kq̃ → L/2L→ 0, (A.62)

such that for any κms(k) ∈ L̂,

(κms(k)Kq̃)
2 = ϵ(k, k)s(2k)Kq̃ = q(k)Kq̃ = ι(q̃(k + 2L)), (A.63)

where we used Lemma A.4 (2) in the second equation.
The following Theorem A.5 is known. From this viewpoint of Theorem A.5 (2), the equation

(A.63) shows that the central extension (A.62) of L/2L by Z2 is the one specified by the quadratic
form q̃.

Theorem A.5 ([FLM88, Prop. 5.3.3]).

(1) For a central extension

1→ Z2
i→ Ê

π→ (F2)
r → 0, (A.64)

whose commutator map is c̃ : (F2)
r × (F2)

r → Z2, if we define a map q̃ : (F2)
r → Z2 by

a2 = i(q̃(π(a))) for a ∈ Ê, (A.65)

then q̃ is a quadratic form with its associated form c̃.

(2) The association of a quadratic form to a central extension in (1) establishes a one-to-one
correspondence

{central extensions of (F2)
r by Z2} /equivalence↔

{
quadratic forms
q̃ : (F2)

r → Z2

}
. (A.66)

Remark A.6. As we have mentioned below (A.43), there are multiple quadratic forms with the
same associated form. Therefore, Theorem A.5 is an example where the one-to-one correspon-
dence between equivalence classes of central extensions and commutator maps like Theorem A.2
does not hold. (See also footnote 46.) (Remark ends.)

To summarize the above discussions, we obtained the following theorem.

Theorem A.7 ([FLM88, Prop. 5.3.4]). Let L̂ be the central extension of a free abelian group L by
Z2 = ⟨κ | κ2 = 1⟩

1→ Z2
i→ L̂

π→ L→ 0, (A.67)

specified by a commutator map c : L × L → Z2. c induces the alternating bilinear map c̃ :

L/2L× L/2L→ Z2. For any quadratic form q̃ : L/2L→ Z2 with associated form c̃,

Kq̃ := {i(q̃(k + 2L))k̂2 | k̂ ∈ L̂, k = π(k̂)} (A.68)

is a central subgroup of L̂, and

1→ Z2 → L̂/K → L/2L→ 0 (A.69)

is a central extension with quadratic form q̃.
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A.4 A Theorem on Automorphism Group of Central Extension

This Section A.4 is a review of [FLM88, Prop. 5.4.1].
Let 1→ N

i→ Ĝ
π→ G→ 1 be a central extension of a free abelian group G of finite rank by

an abelian group N , and c : G×G→ N be the associated commutator map.
We first define some necessary objects. We define a subgroup Aut(Ĝ, N) of the automorphism

group Aut(Ĝ) as

Aut(Ĝ, N) := {χ ∈ Aut(Ĝ) | χ(i(n)) = i(n) for any n ∈ N}. (A.70)

Since N is abelian, Hom(G,N) has a group structure under the multiplication of functions: for
η, η′ ∈ Hom(G,N), (η · η′)(g) = η(g)η′(g). Now we can define a group homomorphism I :

Hom(G,N)→ Aut(Ĝ, N) which maps η ∈ Hom(G,N) to

I(η) : Ĝ→ Ĝ (A.71)

h 7→ i(η(π(h)))h. (A.72)

In fact, I(η) is an element of Aut(Ĝ, N), and I satisfies I(η · η′) = I(η) ◦ I(η′).
We also define a subgroup Aut(G, c) of Aut(G) as

Aut(G, c) := {ϕ ∈ Aut(G) | c(ϕ(g), ϕ(g′)) = c(g, g′) for any g, g′ ∈ G}, (A.73)

and a group homomorphism Π : Aut(Ĝ, N)→ Aut(G, c) which maps χ ∈ Aut(Ĝ, N) to

Π(χ) : G→ G (A.74)

g 7→ π(χ(ĝ)), (A.75)

where ĝ is an element of Ĝ such that π(ĝ) = g. Here, Π(χ)(g) does not depend on the choice of
ĝ, because such another ĝ′ is an element of ĝi(N), and hence

π(χ(ĝ′)) ∈ π(χ(ĝi(N))) = π(χ(ĝ)i(N)) = {π(χ(ĝ))}. (A.76)

To see that Π(χ) is in fact an element of Aut(G, c), it suffices to calculate

c(Π(χ)(g),Π(χ)(g′)) = i−1([π̂(χ(ĝ)), ̂π(χ(ĝ′))]) (A.77)

= i−1([χ(ĝ), χ(ĝ′)]) = i−1(χ([ĝ, ĝ′])) = i−1([ĝ, ĝ′]) = c(g, g′), (A.78)

where we used the definition (A.23) of the commutator map c in the form of c(−,−) = i−1([−̂, −̂]);
recall that it does not depend on the choice of −̂. Lastly, it is easy to see that Π is in fact a group
homomorphism: Π(χ ◦ χ′) = Π(χ) ◦ Π(χ′).

Now, here is the theorem.
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Theorem A.8 ([FLM88, Prop. 5.4.1]). The following sequence is exact.

1→ Hom(G,N)
I→ Aut(Ĝ, N)

Π→ Aut(G, c)→ 1. (A.79)

Proof. ker I = 1N (constant function in Hom(G,N)) and im I ⊂ kerΠ are easy.
kerΠ ⊂ im I can be checked as follows. Let χ ∈ Aut(Ĝ, N) satisfy Π(χ) = idG. Since

π(χ(ĝ)) = g for any g ∈ G, we have π(χ(h)) = π(h) for any h ∈ Ĝ, and hence the difference
χ(h)h−1 of χ(h) and h is in i(N). Furthermore, it only depends on π(h), because if we take
another h′ ∈ Ĝ such that π(h′) = π(h), then h′ ∈ hi(N) and hence χ(h′)(h′)−1 = χ(h)h−1.
Therefore, there exists a map η : G → N such that χ(h)h−1 = i(η(π(h))). The linearity of η
follows from, for any h, h′ ∈ Ĝ,

χ(hh′)(hh′)−1 = χ(h)χ(h′)(h′)−1h−1 = χ(h)h−1χ(h′)(h′)−1, (A.80)

where the last equation follows from χ(h′)(h′)−1 ∈ i(N) ⊂ Center(Ĝ). As a result, η ∈
Hom(G,N) and I(η) = χ.

The surjectivity of Π can be shown as follows. For ϕ ∈ Aut(G, c), consider a new central
extension

1→ N
i→ Ĝ

ϕ◦π→ G→ 1. (A.81)

If s : G→ Ĝ is a section of the original central extension, i.e. π◦s = idG, then s◦ϕ−1 is a section
of (A.81). Then, the commutator map cϕ associated with the new central extension coincides with
the original commutator map c, because

cϕ(g, g
′) = c(ϕ−1(g), ϕ−1(g)) = c(g, g′). (A.82)

Therefore, by Theorem A.2, there exists ψ ∈ Aut(Ĝ) such that the diagram

Ĝ

ψ

��

ϕ◦π

��
1 // N

i

??

i ��

G // 1

Ĝ

π

??

(A.83)

commutes. It is obvious that ψ ∈ Aut(Ĝ, N) from the diagram, and Π(ψ) = ϕ because

Π(ψ)(g) = π(ψ(s(g))) = ϕ(π(s(g))) = ϕ(g). (A.84)
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B Notations of Theta Functions
In this Section B, we review the notations of several theta functions and the Dedekind eta func-
tion, and their modular transformations. We mainly follow [Pol07, Eqs. (7.2.31)–(7.2.44)], but
zPolchinski = e2π

√
−1νPolchinski is y = e2π

√
−1z here, and the order of the arguments is (ν, τ) in [Pol07]

but (τ, z) here, following [ES15, Appendix]. As always, q = e2π
√
−1τ .

The (basic) Jacobi theta function
We first define the (basic) Jacobi theta function as

ϑ(τ, z) :=
∞∑

n=−∞

qn
2/2yn =

∞∏
m=1

(1− qm)(1 + yqm−1/2)(1 + y−1qm−1/2). (B.1)

The second equation is called the Jacobi triple product identity.
Its modular transformations are

ϑ(τ + 1, z) = ϑ(τ, z +
1

2
), (B.2)

ϑ(−1

τ
,
z

τ
) = (−

√
−1τ)1/2eπ

√
−1z2/τϑ(τ, z). (B.3)

The modular T transformation (B.2) is obvious. The modular S transformation (B.3) can be shown
as follows, which is the so-called Poisson summation formula. Using the Fourier expansion of the
periodic delta function

∞∑
n=−∞

δ(x− n) =
∞∑

k=−∞

e2π
√
−1kx, (B.4)

we can calculate that

ϑ(−1

τ
,
z

τ
) =

∞∑
k=−∞

∫ ∞

−∞
dx e−

π
√
−1
τ

x2+2π
√
−1( z

τ
+k)x (B.5)

=
∞∑

k=−∞

e
π
√
−1
τ

(z+τk)2
∫ ∞

−∞
dx e−

π
√
−1
τ

(x−(z+τk))2 (B.6)

=
∞∑

k=−∞

e2π
√
−1(τ k2

2
+zk+ z2

2τ
) · (−

√
−1τ)1/2 (B.7)

= (−
√
−1τ)1/2eπ

√
−1z2/τϑ(τ, z). (B.8)

In the third equation, we used the Gauss integral∫ ∞

−∞
dx e−a(x−b)

2

=

√
π

a
(Re(a) > 0, b ∈ C). (B.9)
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The theta function with characteristics
The theta function with characteristics is defined as

θ

[
a

b

]
(τ, z) := e2π

√
−1abq

a2

2 yaϑ(τ, z + aτ + b) (B.10)

=
∞∑

n=−∞

e2π
√
−1(n+a)bq

1
2
(n+a)2yn+a (B.11)

= e2π
√
−1abq

a2

2 ya
∞∏
m=1

(1− qm)(1 + e2π
√
−1byqm−1/2+a)(1 + e−2π

√
−1by−1qm−1/2−a).

(B.12)

Its modular transformations follow from (B.2, B.3) as

θ

[
a

b

]
(τ + 1, z) = e−π

√
−1(a2+a)θ

[
a

a+ b+ 1
2

]
(τ, z), (B.13)

θ

[
a

b

]
(−1

τ
,
z

τ
) = (−

√
−1τ)1/2eπ

√
−1z2/τe2π

√
−1abθ

[
b

−a

]
(τ, z). (B.14)

The following equations, which follow from (B.10) and (B.11), are also useful.

θ

[
a+ l

b+m

]
(τ, z) = e2π

√
−1amθ

[
a

b

]
(τ, z) (l,m ∈ Z), (B.15)

θ

[
a+ a′

b+ b′

]
(τ, z) = e2π

√
−1a′(b+b′)q

(a′)2
2 ya

′
θ

[
a

b

]
(τ, z + a′τ + b′), (B.16)

θ

[
−a
−b

]
(τ, z) = θ

[
a

b

]
(τ,−z). (B.17)

The elliptic theta functions
The elliptic theta functions, also often called the Jacobi theta functions, are defined as

θ3(τ, z) := θ

[
0

0

]
(τ, z) = ϑ(τ, z) =

∞∑
n=−∞

qn
2/2yn, (B.18)

θ4(τ, z) := θ

[
0

1/2

]
(τ, z) =

∞∑
n=−∞

(−1)nqn2/2yn, (B.19)

θ2(τ, z) := θ

[
1/2

0

]
(τ, z) =

∞∑
n=−∞

q
1
2
(n+ 1

2
)2yn+

1
2 , (B.20)

θ1(τ, z) := −θ
[
1/2

1/2

]
(τ, z) =

√
−1

∞∑
n=−∞

(−1)nq
1
2
(n− 1

2
)2yn−

1
2 . (B.21)
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We also write θ(τ) for θ(τ, 0). Their product representations are, from (B.12),

θ3(τ, z) =
∞∏
m=1

(1− qm)(1 + yqm−1/2)(1 + y−1qm−1/2), (B.22)

θ4(τ, z) =
∞∏
m=1

(1− qm)(1− yqm−1/2)(1− y−1qm−1/2), (B.23)

θ2(τ, z) = q1/8y1/2
∞∏
m=1

(1− qm)(1 + yqm)(1 + y−1qm−1) (B.24)

= q1/8(2 cosπz)
∞∏
m=1

(1− qm)(1 + yqm)(1 + y−1qm), (B.25)

θ1(τ, z) = −
√
−1q1/8y1/2

∞∏
m=1

(1− qm)(1− yqm)(1− y−1qm−1) (B.26)

= q1/8(2 sinπz)
∞∏
m=1

(1− qm)(1− yqm)(1− y−1qm). (B.27)

Their modular transformations follow from (B.13, B.14) as

θ3(τ + 1, z) = θ4(τ, z), (B.28)

θ4(τ + 1, z) = θ3(τ, z), (B.29)

θ2(τ + 1, z) = e
1
4
π
√
−1θ2(τ, z), (B.30)

θ1(τ + 1, z) = e
1
4
π
√
−1θ1(τ, z), (B.31)

and

θ3(−
1

τ
,
z

τ
) = (−

√
−1τ)1/2eπ

√
−1z2/τθ3(τ, z), (B.32)

θ4(−
1

τ
,
z

τ
) = (−

√
−1τ)1/2eπ

√
−1z2/τθ2(τ, z), (B.33)

θ2(−
1

τ
,
z

τ
) = (−

√
−1τ)1/2eπ

√
−1z2/τθ4(τ, z), (B.34)

θ1(−
1

τ
,
z

τ
) = −

√
−1(−

√
−1τ)1/2eπ

√
−1z2/τθ1(τ, z). (B.35)

Jacobi’s identity is

θ3(τ, z)
4 − θ4(τ, z)4 − θ2(τ, z)4 + θ1(τ, z)

4 = 0. (B.36)

Note that

θ1(τ, 0) = 0. (B.37)
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The Dedekind eta function
The Dedekind eta function is defined as

η(τ) := q1/24
∞∏
m=1

(1− qm) =
∞∑

n=−∞

(−1)nq
3
2
(n− 1

6
)2 . (B.38)

The second equation can be obtained by replacing q and y in θ3(τ, z) with q3 and −q− 1
2 , respec-

tively. The modular transformations are

η(τ + 1) = eπ
√
−1/12η(τ), (B.39)

η(−1

τ
) = (−

√
−1τ)1/2η(τ). (B.40)

The modular T transformation (B.39) is obvious. To see the modular S transformation (B.40),
we first observe that, from (B.27),

2πη(τ)3 = ∂zθ1(τ, z)|z=0. (B.41)

Then we have

2πη(−1

τ
)3 = ∂zθ1(−

1

τ
, z)|z=0 (B.42)

= τ∂zθ1(−
1

τ
,
z

τ
)|z=0 (B.43)

= τ(−
√
−1)(−

√
−1τ)1/2∂zθ1(τ, z)|z=0 (B.44)

= (−
√
−1τ)3/22πη(τ)3. (B.45)
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C Cocycle Factor
To realize the appropriate commutation relations of the vertex operators Vk(z) ∝ : e

√
−1k·X(z) :

(k ∈ L) of a lattice VOA VL, in accordance with whether Vk(z) is bosonic or fermionic, we have
to introduce a correction factor ck(p) to modify the commutation relations of : e

√
−1k·X(z) :’s. As

a result, an additional factor ε(k, k′) called a cocycle factor appears in the OPEs of the vertex
operators. In this Appendix C, we will review this story in the language of physics. A good refer-
ence for cocycle factors is [GSW12, §§6.4.4-6.4.5], but it deals with only even lattices. The cases
including odd lattices are discussed in for example [GO85, Appendix], [GTVW13, Appendix A].

As already mentioned, let L be an integral Euclidean lattice of rank n in these notes. We would
like to construct the vertex operators Vk(z) satisfying the commutation relation

Vk(z1) · Vk′(z2) = (−1)|k|2|k′|2Vk′(z2) · Vk(z1), (C.1)

for any k, k′ ∈ L. The conformal weight of Vk(z) is 1
2
|k|2, so it is bosonic when k is even and

fermionic when k is odd, which accounts for the factor (−1)|k|2|k′|2 of (C.1).
Recalling that the OPE of operators : e

√
−1k·X(z) : is

: e
√
−1k·X(z1) : · : e

√
−1k′·X(z2) : = (z1 − z2)k·k

′
: e

√
−1k·X(z1)e

√
−1k′·X(z2) :, (C.2)

we can observe

: e
√
−1k·X(z1) : · : e

√
−1k′·X(z2) : = (−1)k·k′ : e

√
−1k′·X(z2) : · : e

√
−1k·X(z1) : ∼ (z1 − z2)k·k

′
: e

√
−1(k+k′)·X(z2) : , (C.3)

where O((z1 − z2)
k·k′+1) terms are dropped. This (C.3) differs from the desired commutation

relation (C.1) only by the sign. To modify it, let us introduce the correction factors ck(p) as

Vk(z) = : e
√
−1k·X(z) : ck(p), (C.4)

where ck(p) is an operator in the form of a function of the momentum operators pi = αi0 (i =
1, . . . , n). Then (C.1) translates to the condition on this correction factor ck(p) as

ck(p+ k′)ck′(p) = (−1)k·k′+|k|2|k′|2ck′(p+ k)ck(p), (C.5)

where we used ck(p) · : e
√
−1k′·X(z) : = : e

√
−1k′·X(z) : · ck(p + k′), because [pi, : e

√
−1k′·X(z) :] =

(k′)i : e
√
−1k′·X(z) :.

In addition, if we assume that the OPE of Vk(z1) · Vk′(z2) contains (z1 − z2)k·k
′
Vk+k′(z2) as

expected from (C.3), then we need ck(p + k′)ck′(p) = ck+k′(p). However, this immediately turns
out to be impossible in general, because (C.5) states that ck(p + k′)ck′(p) and ck′(p + k)ck(p),
both of which are supposed to become ck+k′(p), can differ by sign. So, we introduce a factor
ε : L× L→ {±1} so that

ck(p+ k′)ck′(p) = (−1)k·k′+|k|2|k′|2ck′(p+ k)ck(p) = ε(k, k′)ck+k′(p). (C.6)
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This allows the vertex operators Vk(z) to satisfy the OPE

Vk(z1) · Vk′(z2) = (−1)|k|2|k′|2Vk′(z2) · Vk(z1) ∼ ε(k, k′)(z1 − z2)k·k
′
Vk+k′(z2), (C.7)

where O((z1 − z2)k·k
′+1) terms are dropped. It easily follows from (C.6) that ε must satisfy

ε(k, k′) = (−1)k·k′+|k|2|k′|2ε(k′, k). (C.8)

Furthermore, we impose the associativity on ck(p) as

(ck(p+ k′ + k′′)ck′(p+ k′′))ck′′(p) = ck(p+ k′ + k′′)(ck′(p+ k′′)ck′′(p)). (C.9)

Then the factor ε should satisfy the condition

ε(k, k′)ε(k + k′, k′′) = ε(k, k′ + k′′)ε(k′, k′′). (C.10)

This means that the factor ε : L×L→ {±1} is a 2-cocycle in the language of group cohomology
(where {±1} is regarded as an L-module by the trivial L-action), and hence ε is called a cocycle
factor. A 2-cocycle satisfying (C.8) is unique up to coboundary; see Theorem A.2. In the language
of Section A.2, ε is a 2-cocycle for the commutator map c(k, k′) = (−1)k·k′+|k|2|k′|2 .

To construct ck(p) satisfying (C.6) and (C.9), we choose a Z-basis {ei}i=1,...,n of L and intro-
duce a bilinear non-commutative product ∗ : L× L→ Z on L by

k ∗ k′ :=
∑
i>j

kik′j(ei · ej + |ei|2|ej|2) +
n∑
i=1

kik′i
1

2
(|ei|2 + |ei|4), (C.11)

where |ei|4 := (|ei|2)2, for k =
∑

i k
iei and k′ =

∑
j k

′jej . This product ∗ depends on the choice
of the basis {ei}i. In the language of Section A.3, this definition (C.11) follows the construction
(A.49) of a cocycle from the commutator map c(k, k′) = (−1)k·k′+|k|2|k′|2 and the quadratic form
q(k) = (−1) 1

2
(|k|2+|k|4). This construction also appears in [Kac98, Remark 5.5a].

We can now construct ck(p) satisfying (C.6) and (C.9) as

ck(p) = (−1)k∗p, (C.12)

and then ε is given by

ε(k, k′) = (−1)k∗k′ , (C.13)

which of course satisfies (C.8) and (C.10).

Proof that ck(p) in (C.12) satisfies (C.6) and (C.9). For the first equation of (C.6), it suffices to
check

(−1)k∗k′ = (−1)k·k′+|k|2|k′|2(−1)k′∗k. (C.14)
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This is already discussed around (A.49), but we can check it explicitly as follows:

(−1)k∗k′+k′∗k = (−1)
∑

i̸=j(k
ik′jei·ej+|kiei|2|k′jej |2)+

∑
i(k

ik′iei·ei+|kiei|2|k′iei|2) (C.15)

= (−1)k·k′+|k|2|k′|2 , (C.16)

where the first equation follows from ki ≡ (ki)2 mod 2, and the second equation follows from∑
i |kiei|2 ≡ |k|2 mod 2.
The second equation of (C.6), and (C.9), are obvious.

Remark C.1. The 2-cocycle satisfying (C.8) is unique only up to coboundary. In particular, the
bilinear non-commutative product we can use to construct ck(p) is not unique. For example, even
if we define

k ∗c k′ :=
∑
i>j

kik′j(ei · ej + |ei|2|ej|2), (C.17)

and construct ck(p) as (−1)k∗cp, it satisfies (C.6) and (C.9). In the language of Section A.2,
this definition (C.17) follows the construction (A.32) of a cocycle from the commutator map
c(k, k′) = (−1)k·k′+|k|2|k′|2 , without considering to specify a quadratic form.

If the lattice L is even, or if the lattice L is odd and we choose the basis so that e1 is odd and
e2, . . . , en are even,48 then this product reduces modulo 2 to

k ∗c k′ ≡
∑
i>j

kik′jei · ej mod 2. (C.18)

This is the form adopted in [GSW12, §6.4.5].
This product ∗c (C.17) often suffices, but does not work well when we consider the reflection

Z2 symmetry discussed in Section 5.3. Suppose we used this product ∗c to construct the cocycle
factor ε, which will play the role of the 2-cocycle of the section k 7→ ek of the extension L̂ (5.36).
Then ε(k, k) = (−1) 1

2
|k|2 in (5.74) no longer holds, because the information of the quadratic form

q(k) = (−1) 1
2
|k|2 (which coincides with q(k) = (−1) 1

2
(|k|2+|k|4) for an even lattice) is not taken

into account (See Lemma A.4 (2)). As a result, the equation (5.74) would be modified by sign,
so if we follow the definition of θ0 in [FLM88, Eq. (6.4.13)] as θ0(ek) = (−1) 1

2
|k|2(ek)−1, then

θ0(e
k) would be e−k only up to sign, and the reflection Z2 symmetry |k⟩ 7→ |−k⟩ would need to

be modified by some extra signs |k⟩ 7→ ±|−k⟩. To avoid this complication, we have adopted the
product ∗ (C.11) in these notes. (Remark ends.)

Remark C.2. The product ∗ (C.11) is a little bit cumbersome. If we can take a Z-basis e1, . . . , en
of L such that

• if L is even,49 |ei|2 ∈ 4Z for any i = 1, . . . , n,

48This is always possible because (odd vector) − (odd vector) = (even vector).
49The existence of a Z-basis e1, . . . , en of a lattice L satisfying |ei|2 ∈ 4Z for any i = 1, . . . , n does not imply

that |k|2 ∈ 4Z for any k ∈ L. In fact, we can take such a basis of the Leech lattice, as we can see from the symmetric
bilinear form (2.49), but the Leech lattice has vectors whose squared lengths are not multiples of 4.
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• if L is odd, e1 ∈ 4Z+ 3 and |ei|2 ∈ 4Z for any i = 2, . . . , n,

then (C.11) modulo 2 coincides with the product (C.18)

k ∗ k′ ≡
∑
i>j

kik′jei · ej mod 2. (C.19)

In the analysis in Sections 4.2 and 4.3 of [Oka24], the author used the bases satisfying these
conditions, and this product (C.19) was used in the Python code there. (Remark ends.)
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D Lift of SO(n) To Spin(n) and Its Action on Spinors
This Section D is a review of the spin group Spin(n) and the lift of elements of SO(n) to Spin(n).
The spin group Spin(n) plays an important role in understanding the structures of the theory A(a)
of free fermions and Duncan’s module V f♮, which are constructed as the Clifford algebra modules
in Section 6. We will review its definition and fundamental property as a double cover of SO(n) in
Section D.1, and describe the explicit form of a lift of an element of SO(n) to Spin(n) in Section
D.2.

D.1 Definitions of Pin Group and Spin Group

In this Section D.1, we review the definitions of pin group and spin group, and their fundamental
properties as (double) covers of O(V ) and SO(V ), respectively. We will follow [LM89, Ch. I §2],
so the details of the facts cited here can be found there.

To keep generality, let V be a vector space over a field K with a symmetric bilinear form
⟨−,−⟩. In addition, we assume that the definition of the Clifford algebra of V is

Cliff(V ) = T (V )/u⊗ u ∼ ϵ⟨u, u⟩ (u ∈ V ), (D.1)

where ϵ is either +1 or −1 (cf. footnote 31). We will omit ⊗. The relation u2 = ϵ⟨u, u⟩ is
equivalent to

uv + vu = 2ϵ⟨u, v⟩ (u, v ∈ V ). (D.2)

The map −idV : V → V induces the parity involution θ : Cliff(V ) → Cliff(V ), which defines
the parity decomposition Cliff(V ) = Cliff(V )0 ⊕ Cliff(V )1.

We can observe that, within the vector space V , the reflection with respect to the hyperplane
perpendicular to a vector v can be realized by the minus conjugate action by v. That is,

Lemma D.1. Any v ∈ V such that ⟨v, v⟩ ̸= 0 satisfies, for any c ∈ V ,

−vcv−1 = c− 2
⟨c, v⟩
⟨v, v⟩

v. (D.3)

Proof. −vcv−1 = −vc( ϵ
⟨v,v⟩v) = −v

ϵ
⟨v,v⟩(−vc+ 2ϵ⟨c, v⟩) = c− 2 ⟨c,v⟩

⟨v,v⟩v.

It is easy to see that this map V → V ; c 7→ c− 2 ⟨c,v⟩
⟨v,v⟩v for ⟨v, v⟩ ̸= 0 is an element of

O(V ) := {O ∈ GL(V ) | ⟨Ou,Ov⟩ = ⟨u, v⟩ for any u, v ∈ V }. (D.4)

Based on the above observation, we define

P (V ) := (the group generated by {v ∈ V | ⟨v, v⟩ ̸= 0}) ⊂ Cliff(V )×, (D.5)

P̃ (V ) := {x ∈ Cliff(V )× | θ(x)V x−1 = V }, (D.6)
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where Cliff(V )× denotes the group of all the invertible elements of Cliff(V ). We have P (V ) ⊂
P̃ (V ) by Lemma D.1. We also have50 K× ⊂ P (V ), where K× = K \ {0}, because if we take
v ∈ V such that ⟨v, v⟩ ̸= 0, then any k ∈ K× can be represented as k = ϵk

⟨v,v⟩v · v, where both
ϵk

⟨v,v⟩v and v are in P (V ). If V is finite-dimensional and ⟨−,−⟩ is non-degenerate, we can show
that the map

φ : P̃ (V )→ O(V );x 7→ θ(x) • x−1 (D.7)

is a group homomorphism satisfying

• kerφ = K×,

• φ|P (V ) : P (V )→ O(V ) is surjective.

Taking all of the above into account, we have an exact sequence

1→ K× → P (V ) = P̃ (V )
φ−→ O(V )→ 1. (D.8)

Pin group Pin(V )

We define the pin group Pin(V ) as

Pin(V ) := {v1 · · · vm | vi ∈ V, ⟨vi, vi⟩ = ±1} ⊂ P (V ). (D.9)

Let us assume that V is finite-dimensional and ⟨−,−⟩ is non-degenerate again. If we can normal-
ize any v ∈ V with ⟨v, v⟩ ̸= 0 so that ⟨tv, tv⟩ = ±1 (t ∈ K×), then φ|Pin(V ) : Pin(V )→ O(V ) is
still surjective because φ(v) = φ(tv). We say that the field K is spin if K× = (K×)2 ∪ −(K×)2

(hence at least one of t2 = ⟨v, v⟩−1 or t2 = −⟨v, v⟩−1 has a solution t ∈ K×) and the characteristic
of K is not 2. For example, R and C are spin. If K is spin, then we have an exact sequence

1→ F → Pin(V )
φ−→ O(V )→ 1, (D.10)

where

F =

{
Z2
∼= {±1} (

√
−1 ̸∈ K),

Z4
∼= {±1,±

√
−1} (

√
−1 ∈ K).

(D.11)

In addition, under the same assumptions (finite-dimensional V , non-degenerate ⟨−,−⟩, spin
K), we have51

Pin(V ) = {x ∈ Cliff(V )× | θ(x)V x−1 = V, θ(x)Tx = ±1} ⊂ P̃ (V ), (D.12)

50 [LM89, p. 19] claims that, if we define K×
0 := K× ∩P (V ), then K× = K×

0 or K× = K×
0 ∪ (−K

×
0 ) holds when

K is spin. However, it seems that K× = K×
0 always follows, regardless of whether K is spin or not, as in the main

text.
51The details are as follows. It is obvious that Pin(V ) defined in (D.9) is in the set on the right-hand side of (D.12).

Conversely, since P (V ) = P̃ (V ), any element x in the set on the right-hand side of (D.12) can be written in the form
of u1 · · ·ul (ui ∈ V ) with q(ui) ̸= 0. Since θ(x)Tx = (−1)lul · · ·u1 · u1 · · ·ul = (−ϵ)l

∏
i⟨ui, ui⟩, the condition

θ(x)Tx = ±1 translates to
∏

i⟨ui, ui⟩ = ±1. Since K is spin, we can take ti ∈ K× such that t2i ⟨ui, ui⟩ = ±1. As a
result,

∏
i t

−2
i = ±1, and

∏
i t

−1
i ∈ F , where F ⊂ Pin(V ) is defined in (D.11). Therefore, x =

∏
i t

−1
i · t1u1 · · · tlul

is in Pin(V ) defined in (D.9).
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where xT is defined as xT = um · · ·u1 if x = u1 · · ·um (ui ∈ V ), and xT = x if x ∈ R. We can
show θ(x)Tx ∈ K× for any x ∈ P̃ (V ), and it is called the spinor norm of x.

Here are some important remarks on the definition of Pin(V ).

• Suppose K = R. If ⟨−,−⟩ is positive- or negative-definite, then we may retain only one
corresponding sign of the condition ⟨vi, vi⟩ = ±1 of the definition (D.9).

• Suppose K = R. If ⟨−,−⟩ is positive-definite and ϵ = 1, or ⟨−,−⟩ is negative-definite and
ϵ = −1, then by taking an orthogonal basis ψ1, . . . , ψn of V with ⟨ψi, ψi⟩ = ±1, we have
(ψi)

2 = +1 for all i. In this case, Pin(V ) is also written as Pin+(n). (D.12) holds even if
we replace θ(x)Tx = ±1 with xTx = +1.

• Suppose K = R. If ⟨−,−⟩ is positive-definite and ϵ = −1 (e.g. the construction of Dun-
can’s module in these notes), or ⟨−,−⟩ is negative-definite and ϵ = 1, then by taking an
orthogonal basis as above, we have (ψi)2 = −1 for all i. In this case, Pin(V ) is also written
as Pin−(n). (D.12) holds even if we replace θ(x)Tx = ±1 with θ(x)Tx = +1.

• Suppose K = C. Since we are considering the symmetric bilinear form, not a Hermitian
form, there is no concept of the signature of ⟨−,−⟩, and we can always take an orthonormal
basis ψ1, . . . , ψn of V with ⟨ψi, ψi⟩ = +1. In this case, the pin group defined as in (D.9)
is not a double cover of O(V ), as in (D.10, D.11). To avoid it and retain the property that
Pin(V ) is a double cover of O(V ), some literature defines (e.g. [Lou01, §17.3])

Pin(VC) := {v1 · · · vm | vi ∈ VC, ⟨vi, vi⟩ = +1} (D.13)

=

{
{x ∈ Cliff(VC)

× | θ(x)VCx−1 = VC, x
Tx = +1} (ϵ = +1)

{x ∈ Cliff(VC)
× | θ(x)VCx−1 = VC, θ(x)

Tx = +1} (ϵ = −1) (D.14)

⊃ {±ψi}i, (D.15)

or (e.g. [Dun07])

Pin(VC) := {v1 · · · vm | vi ∈ VC, ⟨vi, vi⟩ = −1} (D.16)

=

{
{x ∈ Cliff(VC)

× | θ(x)VCx−1 = VC, θ(x)
Tx = +1} (ϵ = +1)

{x ∈ Cliff(VC)
× | θ(x)VCx−1 = VC, x

Tx = +1} (ϵ = −1) (D.17)

⊃ {±
√
−1ψi}i. (D.18)

These Pin(VC) are double covers of O(VC), that is,

1→ {±1} → Pin(VC)
φ−→ O(VC)→ 1. (D.19)

Spin group Spin(V )

We further define the spin group Spin(V ) as

Spin(V ) := Pin(V ) ∩ Cliff(V )0 (D.20)

= {v1 · · · v2l | vi ∈ V, ⟨vi, vi⟩ = ±1} (D.21)

= {x ∈ (Cliff(V )0)× | xV x−1 = V, xTx = ±1}. (D.22)
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If we define SO(V ) as

SO(V ) := O(V ) ∩ SL(V ), (D.23)

then in parallel with (D.10), we have an exact sequence

1→ F → Spin(V )
φ−→ SO(V )→ 1, (D.24)

where F is defined as in (D.11).
Again, here are some important remarks on the definition of Spin(n).

• Suppose K = R. If ⟨−,−⟩ is positive- or negative-definite, then we may retain only one
corresponding sign of the condition ⟨vi, vi⟩ = ±1 of (D.21). (D.22) holds even if we
replace xTx = ±1 with xTx = +1. In this case, Spin(V ) with dimV = n is also written
as Spin(n), which is a subgroup of Pin±(n).

• Suppose K = C. In this case, the spin group defined as in (D.20) is not a double cover
of SO(V ) again, as in (D.24, D.11). To avoid it and retain the property that Spin(V ) is
a double cover of SO(V ), some literature defines Spin(VC) as the intersection of Pin(VC)
defined in (D.13) or (D.16) and Cliff(V )0. That is,

Spin(VC) := {v1 · · · v2l | vi ∈ VC, ⟨vi, vi⟩ = +1} (D.25)

= {v1 · · · v2l | vi ∈ VC, ⟨vi, vi⟩ = −1} (D.26)

= {x ∈ (Cliff(VC)
0)× | xVCx−1 = VC, x

Tx = +1}. (D.27)

This Spin(VC) is a double cover of SO(VC), that is,

1→ {±1} → Spin(VC)
φ−→ SO(VC)→ 1. (D.28)

D.2 Explicit Form of Lift of SO(n) to Spin(n)

From now on, we assume V is an n-dimensional R-vector space, and the symmetric bilinear form
⟨−,−⟩ on V is positive-definite. We fix the definition of the Clifford algebra as Cliff(V ) :=

T (V )/u⊗ u ∼ −⟨u, u⟩. In this Section D.2, we explicitly describe the lifts of elements of SO(n)

to Spin(n).
To begin with, let us see that φ : Spin(n) → SO(n); x 7→ x • x−1 is in fact surjective in this

case. Recall that the reflection with respect to the hyperplane perpendicular to a vector v ∈ V can
be realized as in Lemma D.1.

• First, any two-dimensional rotation is a composition of two reflections, which can be shown
as follows. Suppose we take a basis of V so that the first two basis vectors span the two-
dimensional plane to rotate. Then the matrix representation of the reflection with respect to
the hyperplane perpendicular to v⃗ = (cos θv, sin θv, 0, . . . , 0) is(

c1
c2

)
7→
(
−2v21 + 1 −2v1v2
−2v1v2 −2v22 + 1

)(
c1
c2

)
=

(
− cos 2θv − sin 2θv
− sin 2θv cos 2θv

)(
c1
c2

)
, (D.29)

103



and the other components are just mapped by the identity matrix. Therefore, the composi-
tion of two reflections is(
− cos 2θv′ − sin 2θv′

− sin 2θv′ cos 2θv′

)(
− cos 2θv − sin 2θv
− sin 2θv cos 2θv

)
=

(
cos 2(θv′ − θv) − sin 2(θv′ − θv)
sin 2(θv′ − θv) cos 2(θv′ − θv)

)
.

(D.30)

• Second, as in the following Lemma D.2, any matrix in SO(n) can be block-diagonalized
into two-dimensional rotation matrices, with a diagonalizing matrix in SO(n). That is,
for any rotation in SO(n), there is an orthonormal basis such that the whole rotation is a
composition of the two-dimensional rotations of the planes spanned by two axes among
them.

Lemma D.2. For any M ∈ SO(n), there is O ∈ SO(n) which block-diagonalizes M as

O−1MO =


cos 2πλ1 − sin 2πλ1
sin 2πλ1 cos 2πλ1

. . .
cos 2πλn

2
− sin 2πλn

2

sin 2πλn
2

cos 2πλn
2

 , (D.31)

if n is even, and

O−1MO =



cos 2πλ1 − sin 2πλ1
sin 2πλ1 cos 2πλ1

. . .
cos 2πλn−1

2
− sin 2πλn−1

2

sin 2πλn−1
2

cos 2πλn−1
2

1


, (D.32)

if n is odd.

Proof. The real Schur decomposition states that there exists Õ ∈ O(n) such that Õ−1MÕ is upper
quasi-triangular, which means

Õ−1MÕ =


B1,1 B1,2 · · · B1,m

B2,2 · · · B2,m

. . . ...
Bm,m

 , (D.33)

where each Bi,j is a 2× 2 matrix or a number. Using (Õ−1MÕ)T (Õ−1MÕ) = I , we can further
show that Õ−1MÕ is quasi-diagonal diag(B1,1, . . . , Bm,m), and Bi,i ∈ O(2) or Bi,i = ±1. If

Bi,i ∈ O(2) and detBi,i = −1, then such Bi,i ∈ O(2) can be written as
(
cos θ sin θ

sin θ − cos θ

)
, so
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we diagonalize it to diag(1,−1) by
(
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

)
∈ SO(2). Then, since det(Õ−1MÕ) = 1,

there are even number of Bi,i = −1, and the rest of Bi,i’s are 1 or elements of SO(2). Now,
by reordering the columns of Õ, we can make Õ−1MÕ into the form of (D.31, D.32) within
Õ ∈ O(n). If det Õ = −1, then we just define O as Õ and obtain the lemma. If det Õ = −1, then
we define O as Õdiag(−1, 1, . . . , 1), which only changes B1,1 from the rotation matrix of angle θ
to that of angle −θ, and we obtain the lemma.

Let ψ1, . . . , ψn be an orthonormal basis of V . From the above discussions, it is obvious that
for any O ∈ SO(n) and its lift ±Ô to Spin(n),

(±Ô)

(ψ1 · · ·ψn
)c

1

...
cn


 (±Ô)−1 =

(
ψ1 · · ·ψn

)
O

c
1

...
cn

 , (D.34)

where O is represented as a matrix with respect to the basis {ψi}i.

Let n be even below. Recall that the algebra of Cliff(V ) is

{ψi, ψj} = −2δij, (ψi)
2 = −1. (D.35)

We introduce

Ψi :=
1√
2
(ψ2i−1 +

√
−1ψ2i), Ψi :=

1√
2
(ψ2i−1 −

√
−1ψ2i). (D.36)

They satisfy

{Ψi,Ψj} = {Ψi,Ψj} = 0, {Ψi,Ψj} = −2δij. (D.37)

Setting θv′ = πλi and θv = 0 in (D.30), we can see that the lifts of R(0,...,λi,...,0) := (Ψi 7→
e2π

√
−1λiΨi,Ψj ̸=i 7→ Ψj) ∈ SO(n) are

±((cos πλi)ψ2i−1 + (sin πλi)ψ2i)ψ2i−1 = ∓((cosπλi)1 + (sin πλi)ψ2i−1ψ2i) (D.38)

=: ∓R̂(0,...,λi,...,0). (D.39)

In particular, if we define

r2i−1,2i := ψ2i−1ψ2i (D.40)

=

√
−1
2

(ΨiΨi −ΨiΨi) =
√
−1(−1−ΨiΨi) =

√
−1(ΨiΨi + 1), (D.41)

then we can see that (r2i−1,2i)
2 = −1, and therefore

R̂(0,...,λi,...,0) = eπλir2i−1,2i . (D.42)
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So, r2i−1,2i corresponds to 2


O

0 −1
1 0

O

 in so(n).

Another way to check that eπλir2i−1,2i is a lift ofR(0,...,λi,...,0) is showing eπλir2i−1,2iΨje
−πλir2i−1,2i =

e2π
√
−1λiδi,jΨj , which follows from Ψir2i−1,2i = −r2i−1,2iΨi =

√
−1Ψi.

For more general M ∈ SO(n), using Lemma D.2, we block-diagonalize it as

O−1MO = Rλ⃗ :=


cos 2πλ1 − sin 2πλ1
sin 2πλ1 cos 2πλ1

. . .
cos 2πλn

2
− sin 2πλn

2

sin 2πλn
2

cos 2πλn
2

 , (D.43)

by O ∈ SO(n). The lifts of Rλ⃗ are

±R̂λ⃗ := ±
n
2∏
i=1

(cos πλi + ψ2i−1ψ2i sin πλi) = ±
n
2∏
i=1

eπλir2i−1,2i , (D.44)

and therefore the lifts of M = RO
λ⃗
:= ORλ⃗O

−1 are

±R̂O
λ⃗
:= ±ÔR̂λ⃗Ô

−1 = ±
n
2∏
i=1

(cos πλi + (Ôψ2i−1Ô
−1)(Ôψ2iÔ

−1) sinπλi) (D.45)

= ±
n
2∏
i=1

(cos πλi + (ψ⃗O)2i−1(ψ⃗O)2i sin πλi), (D.46)

where ψ⃗ := (ψ1, . . . ψn) is a row vector, and we used (D.34) in the last equation.
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E Some Comments on the Stolz–Teichner conjecture
In moonshine phenomena, the modular functions associated with CFTs (the partition functions or
elliptic genera) play a central role. In [ST11], a mathematical conjecture which suggests a stronger
relation between them was proposed, and moonshine has also begun to be studied in relation to
it [GJF18, JF20, Lin22, AKL22]. This conjecture is called the Stolz–Teichner conjecture.

The Stolz–Teichner conjecture says that the ring TMF• of the classes of “topological modular
forms” is isomorphic to the ring SQFT• of the equivalence classes of two-dimensionalN = (0, 1)

supersymmetric quantum field theories (SQFT). Its precise statement is beyond the scope of these
notes, but we add more information as follows.

TMF• is a generalized cohomology ring graded by integers ν ∈ Z. If we neglect the torsion
part of TMFν , that is, if we consider TMFν⊗C, then it is isomorphic to the space (MFC)

w-h
ν
2

of the
weakly-holomorphic modular forms (Section 3.2) of weight ν

2
. Their addition and multiplication

correspond to the direct sum and the tensor product of SQFTs. The equivalence relations of
SQFTs are defined properly, and for example they include the continuous deformations.

The degree ν of the space SQFTν specifies the gravitational anomaly of the theories belonging
to it, and if the theory is a two-dimensional N = (0, 1) SCFT of central charge (c, c̃), then
ν = 2(c̃ − c). The map SQFT• → TMF• → (MFZ)

w-h
•
2

associates to a theory T its elliptic
genus52 normalized by η(τ) as η(τ)νZT

ell(τ). Here, (MFZ)
w-h
•
2

is the ring of weakly holomorphic
modular forms with integral q-expansion coefficients. See for example [Tac21, TY23] for more
information accessible from the physics side.

If we believe this conjecture, then we can extract nontrivial statements on the space SQFT• of
SQFTs, by translating the properties of TMF•. Conversely, verifying such statements serves as a
test for the Stolz–Teichner conjecture.

For example, the map TMF• → (MFZ)
w-h
•
2

is not surjective, and an element of its image
generated only by η(τ) over Z is in the form of 24

gcd(24,k)
η(τ)24k with k an integer [Hop02, Prop.

4.6]. This suggests that if anN = (0, 1) SCFT with degree 2(c̃− c) = 24k has a constant elliptic

52Here, the elliptic genus is in the sense of (3.46). We only deal with CFTs in these notes, but a similar discussion
of elliptic genera can be repeated for modular-invariant (up to gravitational anomaly phases) QFTs. The modular
transformations of the elliptic genus are [TYY23, §2.1]

Zell(τ + 1) = e−π
√
−1 ν

12Zell(τ), (E.1)

Zell(−
1

τ
) = e−π

√
−1 ν

4Zell(τ). (E.2)

(cf. In the theory of one real free chiral fermion with central charge c = 1
2 , the lowest conformal weight in the R

sector is 1
16 = c

8 , so qL0− c
24 7→ eπ

√
−1 2c

12 qL0− c
24 under τ 7→ τ + 1.) Here, Zell(τ) = 0 unless ν is a multiple

of 4, because we obtain Zell(τ) = e−2π
√
−1 ν

4Zell(τ) by applying the modular S transformation twice. So, either
Zell(τ) = 0, or the phase of the modular S transformation is just a sign. As a result, by combining the elliptic genus
with the Dedekind eta function η(τ) (see Appendix B), we can see that ην(τ)Z(τ) is in fact a modular function of
weight ν

2 .
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genus ZT
ell, then ZT

ell is divisible by 24
gcd(24,k)

.
In fact, the Conway moonshine module is such an SCFT with minimal non-zero k = ±1 and

elliptic genus 24. The Conway moonshine module or Duncan’s module V f♮ is (the NS sector
of) a chiral N = 1 SCFT, whose automorphism group AutN=1(V

f♮) preserving its N = 1

superconformal algebra is isomorphic to the sporadic Conway group Co1. It was first constructed
by Duncan in [Dun07], from the theory of 24 real free chiral fermions, through the procedure
similar to Z2-orbifold. So its central charge is c = 1

2
× 24 = 12. Therefore, by placing it to

the right-moving part, and setting the left-moving part trivial,53 we obtain an N = (0, 1) SCFT
belonging to SQFT24. Moreover, the elliptic genus of Duncan’s module is a constant (the Witten
index; see Section 3.4) thanks to the N = 1 supersymmetry, and its value is 24. As a result,
Duncan’s module V f♮ is a minimal nontrivial SCFT satisfying the divisibility property suggested
by the Stolz–Teichner conjecture.

Another example of implications from the Stolz–Teichner conjecture is our main interest.
There exists a class called the periodicity element in TMF−242=−576, such that multiplying any
class of TMF• by it gives rise to a bijection TMF• → TMF•−576. This suggests the existence of
an N = (0, 1) SQFT of degree −576, whose elliptic genus is 1.

In [AKL22], a conjectural construction of such an SCFT was proposed based on Duncan’s
module V f♮. More precisely, they proposed a chiralN = 1 SCFT of central charge c = 576

2
= 288

with a unique vacuum state in the NS sector, with the expectation that its elliptic genus is 1. If we
have such a theory, then by regarding it as the left-moving part coupling to the trivial right-moving
part, we obtain an SCFT of degree ν = 2(0 − 288) = −576, corresponding to the periodicity
element. The explicit construction of such an SCFT is not yet known,54 so if we can verify that the
proposed theory indeed has the elliptic genus 1, then it provides a piece of evidence supporting the

53Similarly, if we place Duncan’s module to the left-moving part, and set the right-moving part trivial, then we
obtain an SCFT belonging to SQFT−24. Of course, its elliptic genus is also 24.

54There is also the periodicity element in TMF576. It is known [Dev19] that for any class of TMFν with positive
degree ν > 0, there exists a corresponding SQFT as an N = (0, 1) sigma model, but the explicit construction of its
target manifold is highly nontrivial.

We also note that, if we allow multiple vacua in the NS sector, then a construction of a chiral N = 1 SCFT of
central charge c = 288 and elliptic genus 1 is known as [AKL22, Eq. (1.5)]

24697376(V f♮)⊗24 ⊕ 1291795102224619090515486568295959(V f♮)⊗24/S24. (E.3)

Since the elliptic genera of (V f♮)⊗24 and (V f♮)⊗24/S24 are constants (the Witten indices) and coprime, these coef-
ficients are found as a solution to the Bézout equation. However, this theory has massively degenerate vacua.

We expect the existence of an SQFT with a unique vacuum corresponding to the periodicity element because of
the following facts. First, according to the classification of the chiral fermionic CFTs of central charge c ≤ 24

[BSLTZ23, Ray23, HM23], every class of TMFν with −48 ≤ ν ≤ 0 is realized by a CFT with a unique vacuum.
Second, the above sigma model description guarantees the existence of an SQFT with a unique vacuum for each
positive-degree class, so if we had an SQFT corresponding to the periodicity element of degree −576 with a unique
vacuum, then by using TMF• → TMF•−576, we can conclude the existence of an SQFT with a unique vacuum for
any class of TMF•.
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Stolz–Teichner conjecture. See [JFY24] for another study of the periodicity element in SQFT•.

The SCFT proposed in [AKL22] is expressed as (V f♮)⊗24/A24 × Co1. Let us see how they
arrived at this theory.

Since Duncan’s module V f♮ has central charge 12, its 24-fold tensor product (V f♮)⊗24 indeed
has the central charge c = 12 × 24 = 288. The elliptic genus of Duncan’s module V f♮ is 24,
and thus the elliptic genus of (V f♮)⊗24 is 2424, which is much larger than 1. Even so, since V f♮

have a quite large symmetry, the Co1 symmetry, we can try taking the orbifold by this symmetry.
Orbifolding is a procedure to make a G-invariant theory T /G from a theory T with a finite group
symmetry G. It first adds some states to the theory, but then takes the projection onto the G-
invariant states, so we can expect the number of states to decrease.

However, we cannot always construct the orbifold theory. There can be an obstruction called
the anomaly of the symmetry. One miraculous thing is that the anomaly of the Co1 symmetry of
Duncan’s module V f♮ is described as the generator of a group SH(Co1) ∼= Z24 [JF17, Example
2.4.1], and therefore the anomaly of the diagonal Co1 symmetry of (V f♮)⊗24 vanishes. Hence, we
can take its orbifold as (V f♮)⊗24/Co1.

Compared with 2424 ∼ 1.3 × 1033, the order |Co1| ∼ 4.2 × 1018 of Co1 is still small, so it
is conjectured that we have to take the orbifold by a bigger group. In [AKL22], they calculated
that the orbifolds of (V f♮)⊗24 by the symmetry group S24 and its alternating subgroup A24, which
act as permutation of the factors of the tensor product, have the elliptic genera Z(V f♮)⊗24/S24

ell =

−25499225 and Z(V f♮)⊗24/A24

ell = 381058359637574 ∼ 3.8 × 1014. Since these values are smaller
than |Co1|, it is promising to take the orbifold of these theories by the Co1 symmetry.

In [AKL22], they further claim that the combined symmetry S24 × Co1 is anomalous55 (al-
though only S24 is non-anomalous). As a result, they finally conjecture that the desired SCFT with
elliptic genus 1 is (V f♮)⊗24/A24 × Co1.

Lastly, we remark that the way of constructing an orbifold T /G from a given theory T and
its symmetry G is not unique, and there exists a degree of freedom called the discrete torsion. In
principle, once we construct one of the orbifolds in a consistent way, then all the other orbifolds
can be constructed from it (see Section F.1.3).

55Let us review their discussion. In the theory of n real free chiral fermions, the group SO(n) acts on the NS sector
as a genuine representation, but it acts on the R sector only as a projective representation; what really acts on the R
sector as a genuine representation is its double cover Spin(n) ∼= Z2.SO(n). This appearance of the projective phase
of the SO(n)-action on the R sector is regarded as a part of the fermionic anomaly. Similarly, Co1 genuinely acts on
the NS sector V f♮, but it acts on the R sector V f♮

tw only projectively, and what genuinely acts on V f♮
tw is Co0 ∼= Z2.Co1.

If this anomaly is vanishing, then Co1 also acts on V f♮
tw genuinely, and the action of Co0 becomes unfaithful because

the action of Z2 ⊂ Co0 becomes trivial. According to [AKL22], the action of Co0 on the R sector of the orbifold
(V f♮)⊗24/S24 is faithful, so Co1 can act on this R sector only projectively, which means this S24×Co1 symmetry is
anomalous. On the other hand, the action of Co0 on the R sector of (V f♮)⊗24/A24 is unfaithful.
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F Review of Orbifolds
This Appendix F reviews the theoretical foundations of orbifolds. Orbifold is a procedure to make
a new theory from a theory with a finite group symmetry, but in general, such a symmetry has an
obstruction to the orbifold, called anomaly. In Section F.1, we will review the concept of anomaly,
and when and how we can make it vanish. In Section F.2, we will write down the partition function
of the orbifold theory, and describe some properties of the twisted partition functions.

F.1 ’t Hooft Anomaly

An ’t Hooft anomaly [tH80] is a quantum anomaly of a global symmetry G of a theory T . When
T is a bosonic theory of d + 1 spacetime dimensions with d = 0, 1, 2, its ’t Hooft anomaly is
classified by Hd+2(G; U(1)). When it is not trivial, it is an obstruction to orbifolding T by G. In
this Section F.1, we will review it, starting with the case of 0 + 1 dimension. At the end, we will
describe the anomaly of the Conway symmetry of Duncan’s module.

F.1.1 Anomaly in 0 + 1 Dimension

Let T be a 0+1 dimensional quantum field theory (QFT), namely, a quantum mechanical system,
with a finite group symmetry G. The action of g ∈ G on the Hilbert spaceH is implemented by a
unitary operator Ug : H → H. The group structure requires that the successive implementation of
Ug and Uh should be equivalent to Ugh, but since the physical states are defined only up to U(1)

phases, an additional phase factor α(g, h) ∈ U(1) can appear as

UgUh = α(g, h)Ugh. (F.1)

If we draw the one-dimensional timeline, the Hilbert space H is living on each point, and the
action of Ug is depicted as a point operator, as in the following pictorial equation:

. (F.2)

The phase α compensates the change of the intermediate picture, while keeping the action of the
symmetries from the starting Hilbert space to the ending Hilbert space.

Therefore, G acts on H as a projective representation, or a representation of an extension
of G by U(1), and its equivalence classes can be classified by the cohomology classes [α] ∈
H2(G; U(1)). If we state it more concretely, the associativity (UgUh)Uk = Ug(UhUk) (or the fact
that the operator obtained as the fusion of ordered three operators is independent of the history of
changing pictures) imposes the 2-cocycle condition on α, and redefining Ug as β(g)Ug (β(g) ∈
U(1)) changes α by the 2-coboundary dβ. In this way, the cohomology class [α] ∈ H2(G; U(1))
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is associated with the theory T . This is the ’t Hooft anomaly of the G symmetry of T , and α is
referred to as the anomalous phase.

When the cohomology class [α] ∈ H2(G; U(1)) is trivial, we say that the anomaly is trivial or
vanishing, the symmetry is non-anomalous, or the theory is anomaly-free. In such a situation, by
the redefinition of Ug, we can make α(g, h) = 1 for any g, h ∈ G, so thatG acts onH as a genuine
representation. Otherwise, the ‘projection operator’ P := 1

|G|
∑

g∈G Ug onto G-invariant states is
not truly the projection, for example because UgP ̸= P . Analogously, a nontrivial anomaly in
1 + 1 dimensions is an obstruction to orbifolding or gauging the theory, which is a procedure to
make a G-invariant theory.

F.1.2 Anomaly in 1 + 1 Dimensions

Next, let T be a 1+1 dimensional QFT with a finite group symmetry56 G. On the two-dimensional
spacetime, the group action Ug : H → H on the time-sliced Hilbert space H is depicted as a
horizontal line. Moreover, if the symmetry action is local, then we may perform it only on a
segment or a half-line of the entire one-dimensional space. As a result, the defect, or the twisted
boundary condition, appears at the boundary, and it is depicted as a vertical line (see Figure F.1).
We can also define more curved lines by moving the boundary (see for example [Sei23]). We will
write the g-twisted Hilbert space, realized by the action of g on the right-half space, as Hg. If
there are multiple twisted boundary conditions g1, . . . , gn inserted, then the twisted Hilbert space
is denoted byHg1,...,gn .

Figure F.1: (a) The action Ug : H → H of g ∈ G depicted as a horizontal line. (b) The twisted
Hilbert space implemented by the half-space action.

The fusion of such lines is implemented by the fusion operator

ug,h : Hg,h → Hgh. (F.3)

56As seen in Section F.1.1, a symmetry G of a 0 + 1 dimensional theory acts on the Hilbert space as a projective
representation. In 1+1 dimension, on the other hand, when we say that the theory has a symmetryG, we assume that
G acts on the untwisted Hilbert space as a genuine representation. Even so, it can acts on the twisted Hilbert spaces
as projective representations.

For example, the automorphism group Aut(V ) of a VOA V acts on the untwisted Hilbert space V as a genuine
representation, by its mathematical definition. For a monster VOA V ♮, the anomaly of Aut(V ♮) ∼= M is known to
have order 24 in H3(M; U(1)) [JF17, Thm. 1]. So it is conjectured that H3(M; U(1)) ∼= Z24 in [JF17].
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The order of the fusion of three linesHg,h,k → Hghk should not affect the physics, which implies
the existence of a phase factor α(g, h, k) ∈ U(1) such that

ugh,kug,h = α(g, h, k)ug,hk(Uguh,kU
−1
g ), (F.4)

where Ug • U−1
g appears because we implemented the g-twist on the time-sliced Hilbert space by

letting Ug act on the right-half space. As a pictorial equation,

. (F.5)

Again, the phase α compensates the change of the intermediate picture, while keeping the action
of the symmetries from the starting Hilbert space to the ending Hilbert space.

We omit the details, but the pentagon identity (the fact that the final picture obtained by
changing the order of fusions from the given picture is independent of the history of changing
pictures; see Figure F.2) imposes the 3-cocycle condition on α, and redefining ug,h as β(g, h)ug,h
(β(g, h) ∈ U(1)) changes α by the 3-coboundary dβ.

Figure F.2: The change of pictures to obtain the pentagon identity.

In this way, the cohomology class [α] ∈ H3(G; U(1)) is associated with the theory T . This
fact was known in the context of algebraic QFT [Mug04], and also established in the context of
condensed matter physics in [EN14]; see also [Sei23]. This is the ’t Hooft anomaly of the G
symmetry of T .

F.1.3 Canceling Anomaly and Discrete Torsion

As we will see in Section F.2, the orbifold of a (1+1)-dimensional CFT T by G is constructed by
adding the twisted sectors and projecting them onto the G-invariant states. Assume that we define
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the action of Uh on the twisted sectorHg, where g and h commute, as

. (F.6)

(If g and h do not commute, Uh maps Hg to Hhgh−1 .) If the anomalous phases α in (F.5) are
nontrivial, then the composition UhUk of actions on Hg differs from Uhk by a U(1) phase, so we
cannot define the appropriate projection operator as 1

|G|
∑

g∈G Ug, for a similar reason to the case
of 0 + 1 dimension in Section F.1.1. This is an obstruction to orbifolding.

Moreover, a nontrivial anomaly is also an obstruction to the modular invariance of the orbifold.
Assume that we define the twisted partition function Zh

g (τ) on a torus for commuting g and h as

. (F.7)

Then, the anomalous phases appear in the modular transformations, say the modular S transfor-
mation, as

. (F.8)

Such phases break the modular invariance property of the orbifold theory, unless the anomalous
phases α are all trivial.

If the cohomology class [α] ∈ H3(G; U(1)) is trivial, then by taking a 2-cochain β0 such that
α(g, h, k) = dβ0(g, h, k) = β0(h, k)β0(gh, k)

−1β0(g, hk)β0(g, h)
−1 and rewriting (F.4) using a

new fusion operator (u0)g,h := β0(g, h)ug,h, we can remove the anomalous phase α from (F.4), so
that the obstacle to a modular-invariant orbifold theory does not exist. In particular, if we write
the twisted partition function defined as in (F.7) using fusion operators ug,h as Z(u)h

g(τ), then the
new twisted partition function is

Z(u0)h
g(τ) =

β0(h, g)

β0(g, h)
Z(u)h

g(τ), (F.9)
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and this Z(u0)h
g(τ) is the twisted partition function we can actually use for the computation of the

twisted partition function of the orbifold theory.
However, there is a degree of freedom in the choice of the 2-cochain β0 which is a solution to

the equation α = dβ0. In fact, even if we multiply one solution β0 by a 2-cocycle β, the resulting
β0 ·β is also a solution.57 If we define another new fusion operator (u′0)g,h := β0(g, h)β(g, h)ug,h,
then the resulting twisted partition function Z(u′0)h

g(τ) is different from the originally modified
one Z(u0)h

g(τ) by β(h,g)
β(g,h)

in general. When the 2-cocycle β is just a 2-coboundary β(g, h) =

dγ(g, h) = γ(h)γ(gh)−1γ(g), then this difference β(h,g)
β(g,h)

is just 1 because g and h commute,
and hence Z(u′0)h

g(τ) is the same as Z(u0)h
g(τ).

As a result, we can say that if there is one way of canceling the anomaly (using β0), then there
are #H2(G; U(1)) different ways of canceling the anomaly (using β0β for [β] ∈ H2(G; U(1)))
leading to different twisted partition functions, and hence different orbifold theories. This degree
of freedom is called the discrete torsion.

F.1.4 Anomaly in Fermionic Systems

Finally, we briefly mention the anomaly in fermionic systems. Let us consider a fermionic theory
with a finite group symmetry G. We demand that the G-action should preserve the parity, that
is, it should commute with the symmetry Z2 = ⟨(−1)F ⟩ defining the fermionic parity.58 (As a
remark, in mathematics, the definition of an automorphism of a VOSA contains the condition that
it preserves the parity.) We also assume that G acts on the NS sector as a genuine representation,
but G may act on the R sector as a projective representation, and it is regarded as a part of the
fermionic anomaly. A prototypical example59 is that, SO(n) acts on the NS sector A(a) of n real
free fermions as a genuine representation, but it acts on the R sector A(a)tw only as a projective
representation. This is because what really acts onA(a)tw as a genuine representation is its double
cover Spin(n) = Z2.SO(n); the projective SO(n)-action on the R sector is the composition of a
section s : SO(n)→ Spin(n) and the genuine Spin(n)-action.60

Whereas the bosonic anomalies in 1+1 dimensions are classified by the ordinary cohomology

57Since U(1) is a multiplicative group, the linearity of the differential d is d(β0 · β) = dβ0 · dβ, and the cocycle
condition is dβ = 1.

58 A fermionic theory T [σ] on a space-time manifold M depends on the spin structure σ on M . The set of
spin structures is an affine space modeled on H1(M ;Z2), so by introducing a Z2 gauge field A ∈ H1(M ;Z2)

as T [σ,A] := T [σ + A] up to anomalous phases [BSZ24], we obtain the canonical Z2 symmetry ⟨(−1)F ⟩ of the
fermionic theory. Then the assumption that G commutes with (−1)F also means that the G-action does not change
the NS sector to the R sector, and the R sector to the NS sector. See also footnote 34.

Note that, in [DGG21], the action of a symmetry G is assumed not to contain the change of spin structure σ (Be
careful that this change seems denoted by the action by (−1)F there, and Gf = ⟨(−1)F ⟩.G), but by absorbing the
change of σ into the change of the gauge field A, we can also apply the discussion there to G containing (−1)F .

59 Another example is that, V f♮ admits the action by SemiSpin(24) (or Co1 ∈ SemiSpin(24) if we take theN = 1

structure into account), but it acts on V f♮
tw only as a projective representation, because what really acts on V f♮

tw as a
genuine representation is its double cover Spin(24) (or Co0 ⊂ Spin(24)).

60Since SO(n) is a continuous group, we cannot apply the discussion of Section F.1.2. In particular, we cannot
naively say that “the anomaly of SO(n) is classified by H3(SO(n); U(1)).”
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H3(G; U(1)), the fermionic anomalies in 1+1 dimensions are classified by the supercohomology
SH3(G) [KT17,WG17]. As a set, SH3(G) is the same asH3(G; U(1))⊕H2(G;Z2)⊕H1(G;Z2).
The first layer H3(G; U(1)) is coming from the anomalies similar to the bosonic cases. The
second layer H2(G;Z2) is coming from the fact that the fusion operators ug,h can have fermionic
parities in the fermionic cases (see e.g. [EN14, Tac18, OSTZ25]), and sometimes called the Gu-
Wen layer [GW12]. The third layerH1(G;Z2) describes anomalies which occur when the number
of Majorana fermions is odd, for example at the edge of the Kitaev chain [Kit00].

As an example, the anomaly of a Z2 symmetry of one real fermion in 1 + 1 dimensions
corresponds to the generator of SH(Z2) = H3(Z2; U(1)).H

2(Z2;Z2).H
1(Z2;Z2) ∼= Z2.Z2.Z2

∼=
Z8. See [DGG21] for more details.

In higher d + 1 dimensions, the fermionic anomalies are classified by a certain generalized
cohomology theory (the Anderson dual of the spin bordism group Ωspin

d+2(BG)) [KTTW14, FH16,
GJF17, Yon18], and the supercohomology SHd+2(G) only captures the first three layers of it.

In the case of the Co1 symmetry of Duncan’s module V f♮, it is known [JF17, Example 2.4.1]
that its anomaly is the generator of SH3(Co1) = H3(Co1; U(1)).H

2(Co1;Z2) ∼= Z12.Z2
∼= Z24.

Therefore, if we take the 24-fold tensor product of V f♮ ⊕ V f♮
tw , its diagonal Co1-action is non-

anomalous, and we can consider the Conway orbifold theory (V f♮⊕V f♮
tw )

⊗24/Co1. Recall that the
Z2 symmetry defining the fermion parity of V f♮ ⊕ V f♮

tw is ⟨−1SemiSpin(24)⟩. Since −1SemiSpin(24) is
not contained in Co1 ⊂ SemiSpin(24), this orbifold does not mix the NS sector and the R sector
(see footnote 58).

Remark F.1. The anomaly of the Co0 symmetry of V s♮ is also known [JF17, Example 2.4.1] to be
the generator of SH3(Co0) = H3(Co0; U(1)) ∼= Z24. (In fact, we have seen that H2(Co0;Z2) is
trivial in footnote 37.) So we can repeat the similar arguments for V s♮. (Remark ends.)

Remark F.2. Since SH3(Co0) ∼= Z24, we may consider the orbifold of (V f♮ ⊕ V f♮
tw )

⊗24 by the
preimage Co0 ⊂ Spin(24) of Co1 ⊂ SemiSpin(24). The action of Co0 on V f♮ ⊕ V f♮

tw is the
same as that of Co1 (see footnote 59), but the number of twisted sectors are different (Co1 has
101 conjugacy classes, whereas Co0 has 167 conjugacy classes), so (V f♮ ⊕ V f♮

tw )
⊗24/Co1 and

(V f♮ ⊕ V f♮
tw )

⊗24/Co0 are different theories. (Remark ends.)

F.2 Orbifold Partition Function

If a CFT T has a non-anomalous finite group symmetry G, we can construct a new CFT T /G
called the orbifold of T by G, consisting of G-invariant states. In this Section F.2, we will review
it, focusing on its partition function. After reviewing the construction of orbifold in Section F.2.1,
we will reduce the expression of its partition function, using the properties of the action of G on
twisted sectors in Section F.2.2. We will investigate the SL(2,Z) and GL(2,Z) transformations
of the twisted partition functions in Section F.2.3.
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F.2.1 Basic Construction of Orbifold

Let T be a two-dimensional CFT on a torus with a non-anomalous finite group symmetry G. The
orbifold T /G of T by G is constructed by the following two steps (see e.g. [Pol07, §8.5]).

1. Add all the twisted sectorsHg (g ∈ G) and define

Htot :=
⊕
g∈G

Hg, (F.10)

whereH1 is the Hilbert space of the original theory T .

2. Define the Hilbert spaceH(T /G) of the orbifold T /G as the G-invariant states ofHtot. That
is,

H(T /G) :=

(
1

|G|
∑
g∈G

Ug

)
Htot. (F.11)

We define the twisted partition function of T , with spatial twist g and temporal twist h as

Z(T )h
g(τ) := TrHg [Uhq

L0− c
24 q̄L̃0− c̃

24 ] (q := e2π
√
−1τ ), (F.12)

where Uh : Htot → Htot is the unitary action of h ∈ G, and ˜ denotes the right-moving part,
although we will discuss chiral theories with only left-moving parts after this Section F.2. Recall
that, in general, we need the phase modification (F.9) to make the anomalous phases trivial. Let
Z

(T )
0

h
g(τ) denote the twisted partition function after the phase modification. The partition function

of the orbifold T /G is then

Z(T /G)(τ) =
1

|G|
∑
g,h∈G

Z
(T )
0

h
g(τ). (F.13)

In the rest of this Section F.2, we will investigate the properties of the above concepts, and
rewrite the orbifold partition function (F.13) so that the number of summands will be reduced.

F.2.2 Twisted Partition Functions As Class Functions

We have added the twisted sectors. In the field description, a field ϕ(σ1, σ2) belonging to the
g-twisted sectorHg satisfies

ϕ(σ1 + 2π, σ2) = g · ϕ(σ1, σ2). (F.14)

Then we can see that the action Uh : Htot → Htot of h ∈ G restricted toHg is

Uh : Hg → Hhgh−1 , (F.15)

because if ϕ(σ1, σ2) belongs to the g-twisted sector, then ϕ′(σ1, σ2) := h · ϕ(σ1, σ2) belongs to
the hgh−1-twisted sector as

ϕ′(σ1 + 2π, σ2) = hgϕ(σ1, σ2) = hgh−1ϕ′(σ1, σ2). (F.16)

This fact leads to the following two consequences on the twisted partition functions.
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(1) Since Uh : Hg → Hhgh−1 ,

Z
(T )
0

h
g(τ) = TrHg [Uhq

L0− c
24 q̄L̃0− c̃

24 ] = 0 if hg ̸= gh. (F.17)

In other words, Hg is a representation of the centralizer Cg := {h ∈ G | hg = gh} of g. (If
G is anomalous, thenHg is just a projective representation of Cg.)

(2) The representations of the chiral algebraA onHg andHhgh−1 are equivalent under Uh. That
is, if we write the representation of A onHg as ρg : A → End(Hg), then

Uhρg(•)U−1
h = ρhgh−1(•). (F.18)

Therefore,

Z
(T )
0

h
kgk−1(τ) = TrHkgk−1 [Uhq

ρkgk−1 (L0)− c
24 q̄ρ̃kgk−1 (L̃0)− c̃

24 ] (F.19)

= TrHkgk−1 [UhUkq
ρg(L0)− c

24 q̄ρ̃g(L̃0)− c̃
24U−1

k ] (F.20)

= TrHg [Uk−1UhUkq
ρg(L0)− c

24 q̄ρ̃g(L̃0)− c̃
24 ] (F.21)

= Z
(T )
0

k−1hk
g (τ), (F.22)

where we used the cyclicity of the trace in the third equation. In other words, the twisted
partition functions are class functions in the sense that

Z
(T )
0

h
g(τ) = Z

(T )
0

khk−1

kgk−1 (τ). (F.23)

Combining (F.17) and (F.23), the twisted partition functions Z(T )
0

h
g(τ) can be regarded as a func-

tion over the conjugacy classes of the commuting pairs

G2
com/∼ := {(g, h) ∈ G×G | gh = hg}/(g, h) ∼ (kgk−1, khk−1). (F.24)

Let G/∼ := G/(g ∼ kgk−1) denote the set of conjugacy classes, and [g] ∈ G/∼ be the
conjugacy class of g ∈ G. We introduce the notation

∑
[g]∈G/∼ to represent the sum

∑
g∈{g1,...,gr}

over a complete set {g1, . . . , gr} of representatives of the quotient G/∼ = {[g1], . . . , [gr]}. When
this notation is used, the sum is supposed to be independent of the choice of the representatives.
Now, using ∑

h∈G

Z
(T )
0

h
kgk−1(τ) =

∑
h∈G

Z
(T )
0

k−1hk
g (τ) =

∑
h∈G

Z
(T )
0

h
g(τ), (F.25)
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the orbifold partition function is

Z(T /G)(τ) =
1

|G|
∑
g∈G

∑
h∈G

Z
(T )
0

h
g(τ) (F.26)

=
1

|G|
∑

[g]∈G/∼

|[g]|
∑
h∈G

Z
(T )
0

h
g(τ) (F.27)

=
∑

[g]∈G/∼

1

|Cg|
∑
h∈G

Z
(T )
0

h
g(τ) (F.28)

=
∑

[g]∈G/∼

1

|Cg|
∑
h∈Cg

Z
(T )
0

h
g(τ), (F.29)

where in the third equation, we used |G| = |[g]||Cg|.
We can further decompose the centralizer Cg into conjugacy classes [h]⊂Cg ∈ Cg/∼. Then,

since Z(T )
0

khk−1

g (τ) = Z
(T )
0

h
k−1gk(τ) = Z

(T )
0

h
g(τ) for k ∈ Cg,

Z(T /G)(τ) =
∑

[g]∈G/∼

∑
[h]⊂Cg∈Cg/∼

|[h]⊂Cg |
|Cg|

Z
(T )
0

h
g(τ). (F.30)

Finally, recall that Zg,h(τ) can be regarded as a function over G2
com/∼ defined in (F.24). The

summands of (F.30) are labeled by61 [h]⊂Cg ∈
⊔

[g]∈G/∼
Cg/∼. It is straightforward to show that the

map [h]⊂Cg 7→ [(g, h)] defines a well-defined62 bijection
⊔

[g]∈G/∼
Cg/∼ → G2

com/∼. Therefore, we

have

Z(T /G)(τ) =
∑

[(g,h)]∈G2
com/∼

|[h]⊂Cg |
|Cg|

Z
(T )
0

h
g(τ). (F.31)

F.2.3 Modular Transformations of Twisted Partition Functions

Under the modular transformations, the twisted partition functions transform as (see e.g. [Pol07,
§8.5])

Z
(T )
0

h
g(τ + 1) = Z

(T )
0

gh
g (τ), (F.32)

Z
(T )
0

h
g(−

1

τ
) = Z

(T )
0

g−1

h (τ), (F.33)

if the phases caused by the gravitational anomaly in the modular transformations (E.1, E.2) are
trivial, that is, 2(c̃ − c) ≡ 0 mod 24; the gravitational anomaly phases cannot be canceled by the
phase modification (F.9) to cancel the ’t Hooft anomaly. It then follows that the orbifold partition
function Z(T /G)(τ) =

∑
g,h∈G Z

(T )
0

h
g(τ) is modular invariant.

61 Although the set
⊔

[g]∈G/∼
Cg/∼ := (Cg1/∼) ⊔ · · · ⊔ (Cgr/∼) depends on the choice of the representatives

{g1, . . . , gr} of G/∼, the sum (F.30) is independent of such a choice.
62It is well-defined in the sense that if [h]⊂Cg

= [h′]⊂Cg
then [(g, h)] = [(g, h′)].
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Modular transformations of fermionic twisted partition functions
Assume that the theory T is fermionic and let ⟨(−1)F ⟩ denote the Z2 symmetry defining the

fermion parity. We demand that the symmetry G should commute with (−1)F . We then define
the twisted partition functions for g, h ∈ G as

Z(T )NSh
NSg(τ) := TrHNSg

[Uhq
L0− c

24 q̄L̃0− c̃
24 ], (F.34)

Z(T )Rh
NSg(τ) := TrHNSg

[(−1)FUhqL0− c
24 q̄L̃0− c̃

24 ], (F.35)

Z(T )NSh
Rg (τ) := TrHRg

[Uhq
L0− c

24 q̄L̃0− c̃
24 ], (F.36)

Z(T )Rh
Rg(τ) := TrHRg

[(−1)FUhqL0− c
24 q̄L̃0− c̃

24 ], (F.37)

and again, let Z(T )
0

Yh
Xg (τ) (X,Y ∈ {NS,R}) denote the ones after the phase modifications (F.9),

when G is non-anomalous.
The modular transformations of these twisted partition functions can be derived by the path

integral formalism on a torus as follows. We have seen in footnote 30 that, in the cylinder co-
ordinates, the NS sector is anti-periodic and the R sector is periodic in the spatial direction. In
addition, unlike the bosonic path integral, the fermionic path integral which is periodic in tempo-
ral direction corresponds to the trace with (−1)F inserted, and the anti-periodic one corresponds
to the usual trace [Pol07, Appendix A.2]. As a result, we may regard NS and R in (F.34)–(F.37)
as the nontrivial element and the identity element of Z2 = ⟨(−1)F ⟩, respectively. This discussion
leads to the modular transformations of the fermionic twisted partition functions as

Z
(T )
0

NSh
NSg(τ + 1) = Z

(T )
0

Rgh
NSg(τ), Z

(T )
0

NSh
NSg(−

1

τ
) = Z

(T )
0

NSg−1

NSh (τ), (F.38)

Z
(T )
0

Rh
NSg(τ + 1) = Z

(T )
0

NSgh
NSg (τ), Z

(T )
0

Rh
NSg(−

1

τ
) = Z

(T )
0

NSg−1

Rh (τ), (F.39)

Z
(T )
0

NSh
Rg (τ + 1) = Z

(T )
0

NSgh
Rg (τ), Z

(T )
0

NSh
Rg (−1

τ
) = Z

(T )
0

Rg−1

NSh (τ), (F.40)

Z
(T )
0

Rh
Rg(τ + 1) = Z

(T )
0

Rgh
Rg (τ), Z

(T )
0

Rh
Rg(−

1

τ
) = Z

(T )
0

Rg−1

Rh (τ), (F.41)

if the phases caused by the gravitational anomaly are trivial. More schematically,

S ⟳ Z
(T )
0

NS
NS

T↔ Z
(T )
0

R
NS

S↔ Z
(T )
0

NS
R ⟲ T , Z

(T )
0

R
R ⟲ T,S . (F.42)

If G contains (−1)F , then we should have

Z
(T )
0

Y(−1)F h
Xg (τ) = Z

(T )
0

Yh
Xg (τ), (F.43)

from the definitions (F.34)–(F.37) of the twisted partition functions, and

Z
(T )
0

Yh
X(−1)F g(τ) = Z

(T )
0

Yh
Xg
(τ), (F.44)

from the discussion above. Here, we introduced the notation

NS := R, R := NS. (F.45)
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GL(2,Z) transformations of twisted partition functions
By adding the action of P : τ 7→ −τ̄ to the T and S transformations, the SL(2,Z)-action

enlarges to the GL(2,Z)-action. Under the P transformation, the twisted partition function trans-
forms as

Z
(T )
0

h
g(−τ̄) = TrHgUhe

−2π
√
−1τ̄((L0− c

24
)−(L̃0− c̃

24
)) (F.46)

=
[
TrHge

2π
√
−1τ((L†

0−
c
24

)−(L̃†
0−

c̃
24

))U †
h

]∗
(F.47)

=
[
TrHgUh−1e2π

√
−1τ((L0− c

24
)−(L̃0− c̃

24
))
]∗

(F.48)

=
[
Z

(T )
0

h−1

g (τ)
]∗
, (F.49)

where in the second equation, we simply used TrM = [TrM †]∗, and in the third equation, we used
the fact that L0 is Hermitian and Uh is unitary. It then follows that the orbifold partition function
Z(T /G)(τ) =

∑
g,h∈G Z

(T )
0

h
g(τ) satisfies Z(T /G)(−τ̄) = Z(T /G)(τ)∗. Similarly, for a fermionic

twisted partition functions Z(T )
0

Yh
Xg (τ) (X,Y ∈ {NS,R}), we have Z(T )

0
Yh
Xg (−τ̄) = [Z

(T )
0

Yh−1

Xg (τ)]∗.
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