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Introduction

1 Introduction

Unexpected coincidences between different fields which have been studied independently often
occur in the history of science, and they promote the development and understanding of both
fields. One notable example is moonshine phenomena.

In finite group theory in mathematics, the classification of finite simple groups was a long-
standing problem. Nowadays, it is already settled, and finite simple groups are classified into
three infinite series, and 26 sporadic groups. In 1978, when the existence of the largest sporadic
group called the monster group M was still a conjecture, McKay noticed that its smallest nontrivial
irreducible representation dimension 196883 appears in the coefficient of the modular j-function

J(r) =+ TTA+ 106884g + - (g = eV IT), (1.1)

as 196884 = 196883 + 1 [McKO1]. Furthermore, Thompson observed that the first few coeffi-
cients of the modular j-function can also be written as simple sums of irreducible representation
dimensions of the monster group M [Tho79b]. It came as a surprise to mathematicians at that
time, because the modular j-function is a concept important in arithmetic geometry of elliptic
curves, a field studied independently of finite group theory. Conway and Norton deepened the
relation between the monster group M and the modular j-function, and proposed a conjecture
which they call the monstrous moonshine [CN79]. Here, the English word “moonshine” means
“insubstantial or unreal” [GanO6a].

The appearance of the irreducible representations of the monster group in the modular j-
function was theoretically explained by Frenkel, Lepowsky, and Meurman. They constructed
an algebraic object called a vertex operator algebra (VOA), whose automorphism group is the
monster group, and whose graded character is the modular j-function (up to the constant term)
[FLM88]. However, this moonshine phenomenon was not confined to mathematics. Surprisingly,
the concept of vertex operator algebras provided a mathematical formulation of two-dimensional
conformal field theories in physics. Conformal field theory (CFT) is an important framework in
physics, which describes the string theory in high-energy physics and the critical phenomena in
condensed matter physics.

This triggered off a lot of interaction between mathematics and physics. For example, many
other moonshine phenomena were observed between the sporadic groups and modular functions
or weak Jacobi forms, and one of the prominent examples, the K3 Mathieu moonshine, was found
by physicists Eguchi, Ooguri, and Tachikawa [EH10]. It has been studied by both mathematicians
and physicists to this day, but its mysterious nature has not yet been fully understood.

Moreover, conformal field theories with sporadic group symmetries have been extending be-
yond moonshine phenomena. For example, they are studied in [Wit07, GGK08] in relation to
three-dimensional gravity. In addition, a specific VOA called the Conway moonshine module is



expected to be useful in providing supporting evidence for the Stolz—Teichner conjecture, which
also proposes a new correspondence between mathematics and physics [ST11].



Part I
Review of Basic Concepts

This Part [ is a review of basic concepts related to moonshine phenomena. A moonshine phe-
nomenon is, simply put, an observed relationship between a finite group, in particular a simple
one, and a modular function. So we review some general facts about finite simple groups in Sec-
tion 2, and modular functions in Section 3. The most classical example of moonshine phenomena,
the monstrous moonshine, was theoretically explained by an underlying object called a vertex
operator algebra (VOA). VOAs are also expected to be key ingredients in understanding other
moonshine phenomena, and provide connections with two-dimensional conformal field theories
(CFT) in physics. We will review the axiomatic definition of a VOA in Section 4 to get the idea
of how VOAs mathematically formulate CFTs in physics, but the definition itself is somewhat
technical. In many cases for physicists, it suffices to consider the examples of VOAs reviewed in
the next Part I, whose constructions would be more familiar to physicists working with CFTs.

2 Finite Simple Groups

In this Section 2, we review basic facts about finite simple groups, mainly focusing on important
examples of sporadic finite simple groups. After mentioning the classification of finite simple
groups in Section 2.1, we will describe the Mathieu groups, the Conway groups, and the monster
group in Sections 2.2, 2.3, and 2.4, respectively. Along the way, we also review fundamental
concepts such as codes and lattices, partly in order to fix definitions and notations; we mainly
follow the definitions in [CS99].

Before proceeding, let us clarify the convention of permutation groups and its actions, and
some notations regarding groups and lattice vectors here.

Convention of permutation groups and its actions
The symmetric group .S,, consists of permutations o : §2,, — €, where Q,, = {1,...,n}, and
there are two conventions for the definition of the multiplication:

(1,2) - (1,3) = (1,3,2); 1+ 3,312,251, 2.1)
(1,2)7(1,3) = (1,2,3); 12,2 3,3+ 1. 2.2)

They are related as 7 -0 = o - 7.
In these notes, we will adopt the multiplication - (2.1) and the left action of o € S, on a vector
k= (ki,... . k,) € R"as

O—(k) = (k0’1(1)7 SRR kafl(n))- (2.3)



In GAP [GAP22] and the webpage of ATLAS of Finite Group Representations [WWT ], on
the other hand, they adopt the multiplication - (2.2). So when we cite equations from them, we
will convert them into representations in terms of the multiplication - (2.1) in these notes.

Notations of groups
For groups G and N, following ATLAS of Finite Groups [CCN*85], we write N.G for any
extension of G by N.

1-N—->NG—>G—1. 2.4)

If it is a split extension, or equivalently a semidirect product, then we write N : G or N x G.
Furthermore, if it is a direct product, then we write N x G. We sometimes use the notation N'G
for a non-split extension. For readers not familiar with these topics, Appendix A contains an
elementary introduction to group extensions.

For a group G, we let H"(G; A) denote the n-th group cohomology' of G with coefficients in
A. Here, A is a G-module, although in most cases in these notes, the G-action on A is trivial.

R* denotes the multiplicative group of a ring R.

K[G] denotes the group algebra of G over K.

The cyclic group Z,, is sometimes denoted by just n.

The general linear group GL(n,K) is the group of all the invertible n x n matrices over the
field K. The special linear group SL(n,K) is the subgroup of GL(n, K) of all the matrices with
det = 1. The projective general linear group PGL(n,K) is the quotient group of GL(n, K) by
its center K* - 1, which consists of the non-zero scalar matrices. The projective special linear
group PSL(n,K) is the quotient group of SL(n, K) by its center, which consists of the non-zero
scalar matrices with det = 1. In some literature, PGL(n, Z,) is also denoted by PGL(n, ¢), and
PSL(n,Z,) is by PSL(n, q) or L,(q).

1¢ or simply 1 denotes the identity element of GG. I denotes the identity matrix. idx denotes
the identity map X — X.

Notations of lattice vectors

For a lattice vector k € L. C R" of a lattice L, the components of k£ with respect to the standard
basis of R™ are denoted by subscript as k = (ki, ..., k,), and the components of & with respect
to another basis ey, ..., e, of R" (for example a Z-basis of L, but not limited to such a case) are
denoted by superscript as k = >, k'e;.

We let ey, ..., e, denote an orthonormal basis of R™ where the lattice L is embedded, with
respect to the symmetric bilinear form of L (extended by R-linearity).

When the basis is obvious from the context, 1 denotes (1, ..., 1).

(X; A) of a topological space X. In this notation, the group
(BG} A) of the classifying space BG of G.

! There is another concept, the cohomology H,

cohomology H™ (G A) in the main text is the cohomology H{;,



2.1 Classification of Finite Simple Groups

A group G is said to be simple if its normal subgroups are the trivial ones {1} and G only. A
composition series of a group G is a finite series {1} = Hy C H, C --- C H, = G, where
H;_4 is a proper normal subgroup of H;, and H;/H; ; is simple, for all i = 1, ..., n. The groups
H;/H;_ are called the composition factors, and n is called the length of the composition series.
If a group has a composition series, it is unique in the following sense.

Theorem 2.1 (the Jordan—Holder theorem). If a group has a composition series, then any two
composition series of it have the same length, and the composition factors of them are the same
up to permutation and isomorphism.

It is known that any finite group has a composition series. In this sense, finite simple groups
are fundamental building blocks of finite groups.
The classification of finite simple groups was achieved through the tremendous efforts of many

mathematicians.

Theorem 2.2 (classification of finite simple groups). Every finite simple group is isomorphic to
one of the following groups:

* cyclic groups Z,, of prime order,
* alternating groups A,, of degree n > b,
* finite simple groups of Lie type,
* 26 sporadic groups, listed in Table 2.1.

Among the 26 sporadic groups, the largest one is the monster group M, and 20 sporadic
groups (including M) are involved in M as subgroups or quotients of subgroups. They are called
the happy family, and the other 6 sporadic groups are called pariahs in [Gri82]. The happy family
is further classified into three generations [Gri82]: the first generation is involved in the Mathieu
group Moy, the second generation the Conway group Co;, and the third generation the monster
group M.
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Historically, the sporadic groups first constructed were the Mathieu groups M, M;2 in 1861
[Mat61], and Moo, Mss, Msy in 1873 [Mat73]. The problem of classifying all the finite simple
groups was questioned in an article [H692] by Holder in 1892. Chevalley and others constructed
simple groups called the groups of Lie type around 1955 [Che55], but the advent of a new sporadic
group had to await the discovery of the Janko group .J;, announced in a one-page paper [Jan65]
in 1965, and further clarified in [Jan66]. This was the kick-off of the successive discoveries
of all the sporadic groups, which coincidentally ended again with the Janko group .J; in 1976
[Jan76]. Then the finite group theory was oriented toward the completion of the classification
theorem. It was declared that the proof was completed in 1981 [Gor82], but it was established
as an accumulation of numerous results scattered throughout the literature, so Gorenstein, Lyons,
and Solomon launched a project (the GLS project) to simplify the proof and to present it as a
streamlined series of books. However, a serious gap was found in the classification of groups
called quasithin groups. It was in 2004 that the gap was finally closed by Aschbacher and Smith
in their two-volume books [AS04b, ASO4a], as many as 1221 pages in total. Nowadays, the
classification of finite simple groups is regarded as an established theorem. The books of the GLS
project have reached volume 10 [CGLS23] in 2023, and the project is still ongoing.

As for the history of classification of finite simple groups, see [Asc94, §15], [Sol01, Gurls8,
Soll8a], [Asc04], and in particular for the GLS project, see [Sol18b]. References on sporadic
groups include [Asc94], [Gri98], and [CS99]. ATLAS of Finite Groups [CCN"85] is a standard
database of finite simple groups, and there is also the webpage ATLAS of Finite Group Represen-
tations [WWT]. Regarding the literature on sporadic groups written in Japanese, the unpublished
lecture notes® [Kon96] by Kondo and several expository articles were the only available references
for a long time, although there was a book [Har99] by Harada focusing on the monster group and
the monstrous moonshine. Fortunately, the situation has drastically improved with the publication
of Yoshiara’s book [Yos24] in 2024.

In the following sections, we will review particularly important sporadic groups, the Mathieu
groups, the Conway groups, and the monster group. They can be described as the automorphism
groups (or their subgroups or quotients) of some algebraic objects, the binary Golay code, the
Leech lattice, and the Griess algebra or the monster VOA, respectively.

2.2 The Mathieu Groups and the Golay Codes

There are several ways to define or construct the Mathieu groups, and one of the most approach-
able ways is to define the largest Mathieu group M, as the automorphism group of the binary Go-
lay code GG54. So we first review generalities of linear codes and the binary Golay code in Section
2.2.1, and then introduce the Mathieu groups in Section 2.2.2. As for more details of the Mathieu
groups and their different constructions, see for example [Gri98,CS99, Ival8, Yos24, Cur25].

3The author thanks Masahiko Miyamoto for sharing these notes.
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2.2.1 The Golay Codes

Basic definitions for codes

A g-ary linear code C of dimension m and length n is an m-dimensional subspace of the n-
dimensional F-linear space (IF,)", where ¢ is a prime or a prime power and I, is the finite field
of order ¢. In these notes, codes always refer to linear ones. An element of a code is called a
codeword, and the (Hamming) weight of a codeword w = (wy, ..., w,) is wt(w) = |[{i | w; #
0}|. When the minimal nonzero weight min,cc\ {0y wt(w) is d, this linear code is denoted by
[n, m,d,.

Two linear codes are said to be equivalent when one is mapped to the other by a monomial
matrix, which is a matrix containing exactly one nonzero element of I, in each row and column.
An equivalent map from a code to itself is called an automorphism, and the set of all the auto-
morphisms of C forms the automorphism group Aut(C) of C. Be careful that some literature calls
the quotient of Aut(C) by its center IFqX - 1, which consists of the non-zero scalar matrices, the
automorphism group of C (see e.g. [AM66]).

When ¢ = p* with p prime, the dual code C* of C is defined by

C:={ve[F,)"|v-w=0forany w € C}, (2.5)

where w := ((w1)?, ..., (wy)?) is the conjugate of w, and v - w := ). v;w;. A code C is said to
be self-dual if C* = C. Since dim C* = n — m, the length of a self-dual code must be even.

A binary code is said to be even if the weight of any codeword is even, and doubly-even if a
multiple of 4. An even but not doubly-even code is said to be singly-even. A singly-even self-dual
code is sometimes called Type I, and a doubly-even self-dual code Type II. A Type Il code exists
if and only if the length is a multiple of 8 [CS99, Ch. 7 §6 Cor. 18].

The binary and ternary Golay codes

The (extended) binary Golay code G54 is the unique [24, 12, 8], linear code up to equivalence.
This code is doubly-even and self-dual. A basis of (G4 can be read off from the proof of [CS99,
Ch. 10 §2.1 Thm. 7] as

(1,1,1,1,1,0,0,1,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0),
(0,1,1,1,1,1,0,0,1,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0),
(0,0,1,1,1,1,1,0,0,1,0,0,1,0,1,0,0,0,0,0,0,0,0,0),
(0,0,0,1,1,1,1,1,0,0,1,0,0,1,0,1,0,0,0,0,0,0,0,0),
(0,0,0,0,1,1,1,1,1,0,0,1,0,0,1,0,1,0,0,0,0,0,0,0),
(0,0,0,0,0,1,1,1,1,1,0,0,1,0,0,1,0,1,0,0,0,0,0,0), 2.6)
(0,0,0,0,0,0,1,1,1,1,1,0,0,1,0,0,1,0,1,0,0,0,0,0), '
(0,0,0,0,0,0,0,1,1,1,1,1,0,0,1,0,0,1,0,1,0,0,0,0),
(0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,1,0,0,1,0,1,0,0,0),
(0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,1,0,0,1,0,1,0,0),
(0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,1,0,0,1,0, 1, 0),
(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1, 1).

11



The 24 columns are labeled by 0,1, ...,22, oo in [CS99], which we will write 1,2, ..., 24 below.
The binary Golay code has 1, 759, 2576, 759, and 1 codewords with weight 0, 8, 12, 16, and
24, respectively. Codewords with weight 8 and 12 are called an octad and a dodecad, respectively.

The code obtained by dropping one coordinate of G4y is called the (perfect) binary Golay code
Gas. We omit “extended” or “perfect” when it is obvious from the context. The perfect Golay
code (o3 is the unique [23, 12, 7], linear code up to equivalence. The extended Golay code Gy
can be recovered from (Go3 by adding a parity bit (a bit which makes the weight of the codeword
even).

The perfect ternary Golay code (G1; and the extended ternary Golay code (G15 are respec-
tively the unique [11, 6, 5|3 and [12, 6, 6]3 linear codes up to equivalence. (G1; can be obtained by
dropping one coordinate of GG1o, and G15 can be recovered from (1, by adding a zero-sum check
digit [CS99, (2.8.5)]. G2 is self-dual.

The proof of uniqueness of these four Golay codes Go4, Ga3, G2, and (GG1; are comprehen-
sively explained in [MS77, Ch. 20], based on the original papers [Ple68, DG75]. [vL99, §4.2]
and [Ple98, §10] also contain some proofs.

2.2.2 The Mathieu Groups

The largest Mathieu group ),
The automorphism group Aut((Gy,) of a binary Golay code is the largest Mathieu group Moay.
It is a sporadic simple group, and 5-transitive as a subgroup of Sy4 acting on 24 points. Here,

Definition 2.3 (k-transitive). An action of a group GG on a set X is said to be k-transitive (k-
fold transitive) if for any k elements {i1,...,it} C X and k elements {ji,...,jx} C X, there
is ¢ € G such that g - iy = j;. In addition, if such g is unique for any {iy,...,ix} C X and
{j1,---,Jx} C X, then the action is said to be sharply k-transitive. A 1-transitive action is just
called a transitive action.

A group G is said to be k-transitive, sharply k-transitive, if G is isomorphic to a subgroup of
Sy, such that its action on §2,, = {1,...,n} is k-transitive, sharply k-transitive, respectively. W

Obviously, a k-transitive group is also &’-transitive for &’ < k.

In the above basis (2.6), My, is generated by the following four permutations [CS99, Ch. 10
§2.1]:

(1,2,3,4,5,6,7,8,9,10,11,12,13,14, 15,16, 17, 18, 19, 20, 21, 22, 23),

(16,8,15,6,11,21,18,12,23,22,20)(4,7,13,2,3,5,9,17,10, 19, 14),

(24,1)(16,4)(8,14)(15,19)(6,10)(11,17)(21,9)(18,5)(12, 3)(23, 2)(22, 13)(20, 7),

(15,18,12,20,23)(21,11,8,6,22)(19,5,3,7,2)(9, 17, 14, 10, 13).

A presentation of Mo, can be found in [WWT™] as

2.7

My = {a,b | a®> = 1% = (ba)® = [b~",a]'? = [(bad) ™", a]® = (b~ ab~'aba)? (b~ ababa)® = ((b~'aba)®ba)! = 1), (2.8)

12



where [y~!, 27! = y~'x~lyx and note that the multiplication (2.2) in [WWT™"] is converted to
(2.1) here. In My, generated by (2.7), these generators a and b can be taken as*

a=(1,8)(2,7)(3,19)(4, 23)(5,20)(6, 15)(9, 16)(10, 11)(12, 22)(13, 18) (14, 24)(17, 21), (2.9)
b=(2,9,12)(3,13,24)(4,17,21)(5,16,15)(8, 10, 23)(11, 14, 22). (2.10)

The second largest Mathieu group My3

The Mathieu Group M3 is the stabilizer group of one point of the action of Ms,4 on 24 points.
Since My, is transitive, Mss is unique up to isomorphism, regardless of the choice of the stabilized
point. Equivalently, My; is the automorphism group Aut(Gos) of the perfect binary Golay code
Ga3. It is also a sporadic simple group.

A presentation of Ms3 can be found in [WWT™] as

Moz = (a,b | a®> = b* = (ba)?® = (b*a)® = [b71,a]® = (VPab taba)* = 1,
(b~ta)3(ba)?(b~taba)?b?abta(ba)® = b*ab~tabab®aba(b~tab?a)?(b*aba)® = 1).  (2.11)

If we take Ms3 as the subgroup of My, generated by (2.7) stabilizing the point 23, these generators
a and b can be taken as

a = (1,15)(2,20)(3,12)(4,19)(5,17)(7,13)(8, 18)(11, 14), (2.12)
b=(1,12,17,21)(2,6,3,8)(4,9, 16, 20)(5, 23)(10, 15, 22, 13)(11, 19). (2.13)

More on Mathieu groups

There are five sporadic Mathieu groups: Moy, Mos, Moo, Mo, and My;.

We already introduced Ms4 and Msy3. Mos is the stabilizer group of two points (not as a set;
each point must be stabilized) of the action of My, on 24 points. Since Mo, is 2-transitive, Mo is
unique up to isomorphism, regardless of the choice of the stabilized points. In a similar manner,
since M, is at most 5-transitive, we can also define My, My, and Mig. My is simple, but
not sporadic because it is isomorphic to PSL(3,Fy). My, = 2% : A5 and Mg = 2 : 3 are not
simple [Yos24, §4.1].

M is the quotient Aut(G15)/(—1) of the automorphism group of the extended ternary Golay
code by its center (—1) = Z,. Aut(Gi2) = Z*. M, is a non-split extension. M, is sharply
S-transitive as a subgroup of Sis. M is the point stabilizer of M;5. The automorphism group
Aut(G1,) of the perfect ternary Golay code is Zg x My [AM66, Theorem 1].

Thanks to the classification of finite simple groups, multiply transitive finite groups are also
classified [DM96, §7]. Obviously, S,, is sharply n-transitive, and A,, is sharply (n — 2)-transitive.

“These generators (2.9) and (2.10) were found in the result of the GAP [GAP22] command
IsomorphismGroups (MathieuGroup (24), G), where G is declared as a Group generated by the permu-
tations (2.7). This command returns one explicit isomorphism in the form of a map between generators, so it suffices
to check the relations in (2.8) for the displayed generators.
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Except for them, there are no k-transitive finite groups for & > 6. M, is the only sharply 5-
transitive finite group, My, is the only non-sharply 5-transitive one, M, is the only sharply 4-
transitive (and not 5-transitive) one, and Ms3 is the only non-sharply 4-transitive (and not 5-
transitive) one, except for S,, and A,. My, is 3-transitive, but there are other 3-transitive finite
groups, for example PSL(2,F,).

We have introduced the Mathieu groups as the automorphism groups of the Golay codes (or
their subgroups or quotients), but there is another well-established construction as the automor-
phism groups of the Steiner system.

Definition 2.4 (the Steiner system). The Steiner system S(t,k,n) (1 < t < k < n) is a set
{By,..., By} of k-element subsets B; C €, of ,, = {1,...,n}, such that for any ¢-element
subset 7" C (2,,, there is a unique 1 < ¢ < bsuch that ' C B;. [ |

The Steiner system does not necessarily exist for a given (¢, k,n), and if exists, b = (7)/ (It“),
because the number (7;) of t-element subsets must be equal to b- (’t“) It is known that the automor-
phism groups of S(5,8,24), S(4,7,23), and S(3,6,22) are My, Mo, and Myy.2, respectively.
It is also known that the automorphism groups of S(5,6,12) and S(4,5,11) are M5 and M,

respectively.

The Schur multipliers H2(G;U(1)) of the Mathieu groups Myy, Mas, My, were correctly cal-
culated to be trivial in [BF66]. Those of M,s, M;5 were also calculated there, but turned out to be
wrong, and corrected in [BF68, Maz82] to be the cyclic groups of order 12, 2, respectively.

2.3 The Conway Groups and the Leech Lattice

The Conway groups are defined as the automorphism group (or its subgroups or quotients) of the
Leech lattice Aoy. So we first review generalities of lattices and the Leech lattice in Section 2.3.1,
and then we introduce the Conway groups in Section 2.3.2. As for the facts cited here and for
more on the Leech lattice and the Conway groups, see for example [Gri98, Ch. 9], [Yos24, Sec.
7]. [CS99] contains comprehensive explanations and data on lattices.

2.3.1 The Leech Lattice and the Odd Leech Lattice

Basic definitions for lattices

A lattice of rank n is a free abelian group L of rank n whose basis is an R-basis of a vector
space R™ with a symmetric bilinear form (—, —) : L x L — R. Such a lattice is denoted by the pair
(L, (—,—)), or just L, and naturally regarded as a subset of R™. We will only consider the cases
where the symmetric bilinear forms are non-degenerate. If the symmetric bilinear form is positive-
definite, then the lattice is said to be positive-definite or Euclidean. If the symmetric bilinear form
is indefinite, and of signature (r, s), then the lattice is said to be indefinite or Lorentzian, and of
signature (1, s).
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A vector k in L is sometimes called a lattice point of L, and we also write the product (k, k)
of two vectors k, k' € L given by the symmetric bilinear form as k - &". If any vectors k, k' € L
satisfy k - k' € Z, then the lattice is said to be integral. The squared length of a vector k € L is
defined as |k|* := k - k. A vector k € L with |k|*> € 27 is called an even vector, and k € L with
|k|> € 2Z + 1 is called an odd vector. An integral lattice is said to be even if its vectors are all
even, and odd otherwise. If we take a Z-basis ey, . .., e, of L, then the matrix G = [e; - ¢;]; ; is
called the Gram matrix of L.

An isometry or isomorphism g : L — L' of lattices L and L’ is an isomorphism of free abelian
groups compatible with their symmetric bilinear forms. The group of all the isometries L. — L, or
the automorphisms of L, is denoted by Aut(L) or O(L), but note that Aut(L) sometimes denotes
the automorphism group of just a free abelian group L (e.g. Section 5.2.3).

The dual lattice L* of L is defined by

L*:={leR"|(l,k) € Zforany k € L}, (2.14)

with the same symmetric bilinear form as that of L. L is integral if and only if L C L*. L is said
to be self-dual or unimodular if L* = L. An odd self-dual lattice is called Type I, and an even
self-dual lattice is called Type I1.

Similarly to Type II codes, a Type II positive-definite lattice exists if and only if the rank is
a multiple of 8 [CS99, Ch. 7 §6 Cor. 18]. Up to isometry, the Ej lattice is the only one of rank
8. Es @ Fg and Dy are the only ones of rank 16. There are 24 Type II positive-definite lattices
of rank 24, and they are called the Niemeier lattices [Nie73]. 23 lattices of them have vectors
with squared length 2, whereas the last one, the Leech lattice Aoy, does not. Moreover, a Type
IT indefinite lattice of signature (r,s) (r, s > 0) exists if and only if » — s = 0 mod 8, and it is
unique up to isometry [Ser73, Ch. V].

Root lattices
A positive-definite even lattice generated by vectors with squared length 2 is called a root
lattice.” Any root lattice is known to be a direct sum of the irreducible root lattices, which are

Note that there is also the concept of a root of a semisimple Lie algebra g, whose squared length is not necessarily
2, and the root lattice Ly of g, which is the lattice generated by the roots of g. If all the roots have squared length 2,
then g is said to be simply-laced.

The subgroup W of the isometry group Aut(Ly) generated by the reflections with respect to the hyperplanes
perpendicular to roots is called the Weyl group of the Lie algebra g. The entire isometry group Aut(L,) is known to
be the semidirect product Wy : Aut(Dynkin diagram).

The Weyl group W is also defined for a connected compact Lie group G as follows. Let Tz = U(1)" be the
maximal torus in G, and N (T¢) := {g € G | gtg~! € T forany t € T} be its normalizer. Since the conjugate
action of T on Tg is trivial, T is a normal subgroup of N(T¢). The Weyl group of the Lie group G is then
W¢ = N(T¢g)/T¢. It is known that W coincides with the Weyl group W, of the Lie algebra g of the Lie group G.
The rank of Lg is 7.

Whether N(Tz) = Tq.We = U(1)".Wj splits or not, which is an analogous problem to the main question
of [Oka24], is answered in [CWW74, Theorem 2] for simple Lie groups. It depends on the Lie group G, and for
example, it does not split when G = FEg, E7, Eg.
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classified as the A, lattices (n € Z>,), the D,, lattices (n € Z>,), and the Eg, E7, Eg lattices,

defined as follows [CS99, Ch. 4].

» The A,, lattice is a root lattice of rank n defined as

n+1

A ={(21,. . ) €27 ) =0},

i=1

(2.15)

on the hyperplane R" = {z;+---+x,; = 0} C R"", with the standard Euclidean metric

on R*+1,

We can take a Z-basis eq, ..., e, of A, as

e;=(0,...,1,-1,...,0) € R"*!,

and then the Gram matrix is

2 -1 0 0 O
-1 2 -1 0 O
0 -1 2 0 O
0O 0 0 2 -1
0o 0 0 -1 2

* The D,, lattice is a root lattice of rank n defined as

D, ::{k:(k:l,...,kn)EZ"|ZkiEOmod2},

i=1
with the standard Euclidean metric on R".
We can take a Z-basis eq, ..., e, of D, as

e = (-1,-1,0,...,0),

i—1

e;=(0,....,1,-1,...,0) (i=2,...

and then the Gram matrix is

2 0 -1 0 0 0
0 2 -1 0 0 0
-1 -1 2 -1 0 0
0 0 -1 2 0 0
0 0 0 0 2 -1
0 0 0 0 -1 2

16
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In addition, the D lattice is defined as
n 1-
D) :=D,U (51 +D,).
* The Ejg lattice is a root lattice of rank 8 defined as

1 n
N — 3 8 2: —
Eg.—{k—(k‘l,...,kg)ez U(Z+§) |i_1l€i:0m0d2},

with the standard Euclidean metric on R™. We have Dy = Es.

We can take a Z-basis ey, . .., eg of Eg as

e = (—1,-1,0,...,0),

1 1 111111
62:(_7 _________ )7

27 27 27272727272

2 0 -1 0 0 0
0o 2 0 -1 0 0
-1 0 2 -1 0 0
0 -1 -1 2 0 0
0o 0 0 0 2 -1
0O 0 0 0 -1 2

The E- lattice and the Eg lattice are defined as

E7 = {(l{l,
E6 = {(]{71,

ks) € Eg | kr = ks},
ks) € Eg | ke = k7 = kg}.

(2.22)

(2.23)

(2.24)
(2.25)

(2.26)

(2.27)

(2.28)
(2.29)

The Niemeier lattices can be distinguished by their root sublattices, that is, the sublattice

Lattices from codes

generated by its vectors with squared length 2. A Niemeier lattice with its root sublattice being
X is often referred to as the X Niemeier lattice, say the (A;)?*! Niemeier lattice, except for the
Leech lattice Ay, whose root sublattice is O.

There are several ways to construct a lattice from a given code. We focus on the case of binary

codes here. See [CS99] for more on constructions.
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Let C C (F2)" be a binary code of length n, and regard each codeword of C as a vector with
entries O or 1. We can construct a lattice A(C) of rank n as

A(C) = %c +2Z" C R", (2.30)

with the standard Euclidean metric k - k' = > kk] for k = (k;);, k' = (k}); € R" as the
symmetric bilinear form. This construction is called Construction A [CS99, Ch. 7 §2]. This
lattice A(C) satisfies A(C*) = A(C)*. Hence, A(C) is integer if and only if C satisfies C C C*, and
self-dual if and only if C is self-dual. In addition, A(C) is of Type I (odd self-dual) if and only if
C is of Type I (singly-even self-dual), and Type II (even self-dual) if and only if C is of Type II
(doubly-even self-dual). Another construction called Construction B [CS99, Ch. 7 §5] associates
the sublattice

Ag(C) == {k = (k1,... k) € A(C) | \/ﬁik € 47} (2.31)

of A(C) to a binary code C.
For a doubly-even self-dual binary code C, we further consider the following constructions
[DGM94, §5.1]. We first define

7t ={x eZ"||z|* € 2Z}, (2.32)

7" = {x cZ"||z|* € 2Z + 1}. (2.33)

Recall that the length n of a doubly-even self-dual code is always a multiple of 8, and also define
1

Ao(C) = Ec +V22", (2.34)
1

A (C) := —=C + V27", (2.35)

\/_
As(C) = 2\/_ \[C + \/_Z" e (2.36)
As(C) = Lesva zy (2.37)
’ 2\f iRV

where T := (1,...,1). All the vectors in A;(C) for i = 0, 1,3 are even, whereas those in A,(C)
are odd. Then we can construct some more lattices as in Table 2.2.

Table 2.2: Lattices constructed from a doubly-even self-dual binary code C. On the right side
of the vertical line, the names of lattices constructed from the binary Golay code (G54 and their
isometry groups are shown.

name of construction lattice property forC = Gy Aut(lattice)
Construction A A(C) = Ap(C)UAL(C) even self-dual | (A;)?* Niemeier lattice 224 : My,
Construction B Ap(C) = Ay(C) even

twisted construction  A(C) = Ao(C) UAs(C)  even self-dual | Leech lattice Aoy Cog

— N(C) = Ao(C) UAy(C) odd self-dual | odd Leech lattice Opy 22 : Moy

18



The odd Leech lattice O,

The odd Leech lattice Oy, is the unique positive-definite odd self-dual lattice of rank 24 with-
out roots (vectors of squared length 2) up to isometry. It can be constructed from the binary Golay
code G4 as

1
Oy = (—=Gay + V2Z*) U (—=1 + —=Goy + V2Z2Y). (2.38)
V2 NVGET* 75
Historically, the odd Leech lattice was first found in [OP44].
If we use the binary Golay code G54 with the basis (2.6), then we can take a Z-basis ey, . . . , €4
of (2.38) as
€ = 2\1/§T

ey = f(the second line from the bottom of (2.6)),

ey = %( the first line of (2.6)),

ers = v/2(1,0,0,0,0,0,0,0,0,0,0,1,0,...,0), (2.39)
€14 :\/_(1a0707070a070707070’170’0""70)’

€93 :\/_(1,1,0,...,0),

eas =/2(2,0,...,0).

In fact, Oy in (2.38) obviously contains Spany{e; };, and the opposite direction of the inclusion

can be checked as follows. Since it is obvious that Spanj{e;}; contains 2\1[1 and 12 Gy, it

suffices to check that it also contains \/§Zi4. Here, Z3* is generated by the 24 vectors

(1,0,...,0,0,1),

(1707' "707170)7

(1,1,0,...,0),

(2,0,...,0).
Since the last 12 vectors of v/2x (above 24 vectors) are exactly eq3, ..., eay, it suffices to check
that the first 12 vectors of v/2x(above 24 vectors) can be written as Z-linear combinations of
e, ..., e, which can be checked by computer.

The isometry group Aut(Oy,) of the odd Leech lattice is known to be 2'2 : My, [CS99, Ch.
17]. In the construction (2.38), these automorphisms are apparent because My, = Aut(Goy) and
212 are the maps k = (k;); — ((—1)%ik;); where w = (w;); € Goy.

If we use Construction A for ternary codes, an odd Leech lattice can also be constructed from
any self-dual ternary code of length 24 with the minimal nonzero weight 9. It is known that
there are only two such ternary codes up to equivalence [LPS81]: the extended quadratic residue
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code (o4 (see e.g. [MS77, Ch. 16]), and the symmetric code P, defined by Pless [Ple69, Ple72]
[MS77, Ch. 16 §8]. However, the automorphism groups of these ternary codes are Aut(Qa4) =
(F5)* x PSL(23,Fy) [MS77, Apply Theorem 13 in Ch. 16 §5 to p = 23] and Aut(Pyy) =
Z4 x PGL(11,F,) [MPS76, §5.2], so the structure of Aut(Oq4) = 2'2 : My, is not apparent
in these constructions of odd Leech lattices. See [GJF18, Example 4.5] for application of these
constructions to A/ = 1 supersymmetries of the lattice VOAs.

The Leech lattice Ao,

The Leech lattice Ao, is the unique positive-definite even self-dual lattice of rank 24 without
roots (vectors of squared length 2) up to isometry. It can be constructed from the binary Golay
code Go4 as

%Gm + \/5214) U (%q%- %Gm + \/522_4)- (2.40)
Historically, the Leech lattice was discovered by Leech in [Lee67, §2.31], but it is also said that
one of the more than 10 Niemeier lattices, which was reported to be found by Witt in [Wit41, p.
324] without further details, is the Leech lattice [Wit98, p. 328-329]. See an informative video
[Bor20] by Borcherds for more details.

For an even lattice L, we define

A24:(

Lq:={k € L||k]>=2d}. (2.41)

An even lattice L of rank 24 is isomorphic to the Leech lattice Ay, if and only if it satisfies

|Li| =0, (2.42)
|Ly| = 196560, (2.43)
|Ls| = 16773120, (2.44)
| L4 = 398034000. (2.45)

We consider the quotient Aoy /2A94 of Ay by the equivalence relation k ~ k' < k—k' € 2Ay,.
We can take a complete set of representatives of Ayy/2Ao, as follows.

e Take 0 € Agy.
* From (Ayy)2 and (Agy)s, if we take k, then do not take —k.

» For k € (Ag4)4, its equivalence class k + 2A,4 contains 48 vectors of squared length 8
as (k + 2A94) N (Agg)s = {Ek,tko, ..., Lkos}, so take one of them. It is known that
{k, ks, ..., kos} constitutes an orthogonal basis of R?%.
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(2.46)

T

(wz>2 € G24. This

1
1
-1
0

-1
0

1
0 -1

-1
0
0 -1 -1

0
0 -1 -1

0

0 -1 -1
0 -1 -1

2 -1 -3 -1 -1 =2
-1

0
0

0 -1 -1

0 -2 -1 -1 -1
-2

0 -1 -1 -1 -1
1 -2 -2 =2
1 -1 -1 -1
1 -2 -2 -2 -1

0
4 -2 4 -1 -1 -2 -1 -1 =2

(ki)i = ((—1)"ik;); where w

: My, is called the monomial subgroup of Coy. Coy is generated by this monomial

3 -1 =3 -1

6 —4 -2 -3 —4
-6 -3 —2 -1 —4

-8 =5 -3 -2 —4
2 -1 =2 -1

3 -2 -2 -1
2 -1 -4 =2

-2
2 -1 =2 -1

6 -2 -5 -3

-2
-2

0
0
2
0

-3 -3 -1 -1 —4
-6 —4 -2 -2 -3

-3 -2 -1
-2 -2 -1
-3 -3 -1

0
1
0
-1
1

1
-2
0
1

9 -1 -1 =13 -9 -5 —4 -9

1 -1 -1

4
4

3

-7 -5 -3 -1 -6
-6 —4 -2 -2 -3

i)

From the construction (2.40), it is apparent that Coy contains 2'2 : My, as a subgroup, where
Generators of Coy as a subgroup of SL(24, Z) can be found on the Co; page of [WWT'] as

Myy = Aut(Gy4) and 2'? are the maps k

The isometry group Aut(As,) of the Leech lattice is the largest Conway group Coyg. It is not a
subgroup 2!2

simple group, but its quotient by the center {41} is the largest sporadic Conway group Co;.
subgroup and a specific order-2 element. As a subgroup of O(R?*), Coy does not contain matrices

of determinant —1, and hence Coy is a subgroup of SO(R?**).

2.3.2 The Conway Groups
The Conway groups Coy and Co,

(2.47)

-1
0
0

0
0 -1
1

0 -1 -1
0
0 -1 -1

1

0 -1 -1 -1
-1 0 -1
0 -1 -2

0
0 -1 -1 -1 -1 -1

0 -1
3 -1 =2 =2

-1
0
0
0 -2 -1 =2 -1

1 -2 -1 =3 =2
-1

0 -1 -1 -1 -1
1 -3 -1 =3 -1
1 -1 -1

0 -2 -2 -1 -2
0 -2 -1 =2 -1
1

1 -1 -1 -1 -1

0
7
21

7 -3 -6 -3
-1
4

4 -3 -3 -2
3 -2 -3 -2
3 -1 -1 =2
6 —4 -5 =3
2 -1 =3

7T -2 =5 =3
3 -1 -1 -2
4 -2 =2 =3
3 =2 -4 -1

2 —18 —11 -7 —4 -10

-2
—4

0
—6

0
4
0

-1

—2 -2
-4 -2 -3
-3 -3 -1
8 5

1
-1 -1 —1
-5 -2 —2
—4 -1 -1

—land B® = 1.

-3
-6
-5
12
3
-6
—4

0 1
0 -1
0 0
0 -1
2 -2 =2
2 -1 =2
1

6

9
-10
-2
14

where the transpose on the right-hand side is taken just for the convenience of notation. These

generators satisfy A2



The Conway group Cog generated by these generators A and B is the isometry group of a
lattice (7%, q), where ¢ is some symmetric bilinear form which makes (Z?*, ¢) isomorphic to
the Leech lattice. The matrix form of ¢ up to scalar multiplication can be found by solving the
conditions

ATgA=q, BT¢B=q, (2.48)

by Mathematica [Wol23]. Note that the elements of the Conway group Coy in this notation act on
the column vectors in the lattice (Z*?, ¢) from the left. The result is

4 -2 -2 2 2 2 -1 -1 2 2 -2 -2 1 1 1 2 0 -1 0 -2 -2 2

-2 4 0 0 -2 0-1 2 0 0 2 -1 1 1 -1 1 -2 -2-1 1 1 2 1 =2

-2 0 4 0 0-2 0 0 0 0 2 0 0 -2 1-1-1-1 1 -1 -1 1 0 -1

2 0 0 4 0 0-2-1 2 2 0 2 -2 1 0 2 -1 0-1 0 1 -1 -1 0

2 -2 0 0 4 0-1-1 1 1 -1 1-1 0 0-1 0 2 0 -2 -2 -1 -2 2

2 0-2 0 0 4 0 0 1 1 -1 1-1 1-1 1 1 0 1 0 1 0 -1 1

-1 -1 0-2-1 0 4 1-1-1 0-2 2 0 0 0 2 -1 0 0-1 1 2 —1

-1 2 0-1-1 0 1 4 1 1 2 -1 1 0-1 1 -1-1 -1 -1 -1 1 1 -1

2 0 0 2 1 1 -1 1 4 2 0 2 -2 1 0 1 -1 0-1 -2 0-1 -1 0

2 0 0 2 1 1 -1 1 2 4 0 1 -2 0-1 1-1 1 0 -1 -1 -1 -1 1

-2 2 2 0-1-1 0 2 0 0 4 0 1 -1 0 1 -1 -2 0 0 0 2 1 =2

_ 2 -1 0 2 1 1 -2-1 2 1 0 4-2 0 1 0 0 1 0-1 1 -2 -2 1

q= -2 1 0 -2 -1 -1 2 1 -2 -2 1 -2 4 0-1 0 1 -1 -1 1 0 2 2 —2|[° (249)

11 -2 1 0 1 0 0 1 0-1 0 0 4-1 1 0-1-2 0 0 0 0 0

-1 -1 1 0 0-1 0-1 0-1 0 1 -1 -1 4 -1 -1 0 0 0 0-1 0 0
11 -1 2-1 1 0 1 1 1 1 0 0 1 -1 4 0-1-1 0 1 1 0 -1

1 -2 -1 -1 0 1 2 -1 -1 -1-1 0 1 0-1 0 4 1 1 0 0 0 0 0

2 -2 -1 0 2 0-1-1 0 1-2 1-1-1 0-1 1 4 1 -1 -1 -2 =2 2
0-1 1-1 0 1 0-1-1 0 0 0-1-2 0-1 1 1 4 0 0 0 -1 1

-1 1 -1 0-2 0 0-1-2-1 0-1 1 0 0 0 0-1 0 4 2 0 2 -1
01 -1 1-2 1-1-1 0-1 0 1 0 0 0 1 0-1 0 2 4 0 1 -1

-2 2 1 -1-1 0 1 1 -1-1 2 -2 2 0-1 1 0-2 0 0 0 4 1 -2

-2 1 0-1-2-1 2 1-1-1 1-2 2 0 0 0 0-2-1 2 1 1 4 =2

2 -2 -1 0 2 1-1-1 0 1-2 1-2 0 0-1 0 2 1 -1 -1 -2 -2 4

The Conway groups Co, and Cog

There are two more sporadic simple Conway groups Coy and Cos. They are the stabilizer
groups of one vector in (Agg)s and (Agy)s, respectively, under the action of Cog on Agy. It is
known that the actions of Coy on (Ag4)2 and (Agy)s are transitive, so these groups are unique up
to isomorphism. Since —1 € Coqy does not preserve any non-zero vector, Coy and Cos are also
isomorphic to subgroups of Co;.

2.4 The Monster Group

The monster group M, whose existence was predicted independently by Fischer and Griess in
1973, was first constructed by Griess in 1981 [Gri81, Gri82], as the automorphism group of a
certain algebra B! with a bilinear form 7. The algebra B’ is called the Griess algebra. More
precisely, Griess constructed M as a subgroup of Aut(B% 7), and Aut(B% 7) = M was later
shown in [Tit84].

As a vector space, B’ is a 196884-dimensional representation space of a group C'(Ayy) =
21724 Co, over Q. In [Gri82], a specific commutative non-associative product and an associative®
symmetric bilinear form 7 are introduced to this C'(Ay4)-module, in a way compatible with the

%A bilinear form 7 is called associative if it satisfies 7(u, v - w) = 7(u - v, w).
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C(Ag4)-action, which defines the C'(Ayy)-algebra B called the Griess algebra. Now, Aut(B*, 7)
contains C(Ay,), and a specific order-2 element o can be found in Aut(B%,7) \ C(Ay,). Finally,
the group generated by C'(Ay4) and o is shown to be simple, and have the right order |M].

When B? was introduced in [Gri82], the monster VOA V? [FLM88] (explained later in Section
5) was not yet constructed. However, in the modern understanding, it is natural to regard B° as the
weight-2 subspace (V#), of V¥. In fact, one of the important results on the monstrous moonshine
is that Aut(V“) = M. As we will see in Section 5, V¥ is the Z5-orbifold of the Leech lattice VOA,
and hence its weight-2 subspace (V*), = B* consists of

.....

is 22%21 — 1 4 299, containing the trivial representation Span{}_, , “,]0)} of SO(24).
* Span{|k) + |—k) }ke(ass).» Whose dimension is |(Ag4)2]/2 = 98280.
o Span{C’ | [s) }ic1,. 24, s)ex(Ass)» Where X' (Agy) is the 2% -dimensional irreducible represen-
2
tation of a certain gamma matrix algebra I'(As4), so the dimension is 24 x 2% = 98304.

These three subspaces are denoted by U, V, and W, respectively, in [Gri82]. In the language of
VOA (see Section 4), the commutative non-associative product on B% is introduced as

v-w = vw, (250)
and the associative symmetric bilinear form 7 is introduced as
T(v,w)1 = vEgyw, (2.51)

for any v, w € (V). The one-dimensional subspace in the first (1 + 299)-dimensional subspace
will turn out to be the trivial representation of Ml = Aut(B", 7), and the irreducible decomposition
of B' as a representation of M is 196884 = 1 + 196883, where 196883 is the smallest nontrivial
irreducible representation of M.

See for example [Gri98, Ch. 11] and [Har99] for more on the Griess algebra and the monster
group. A simpler construction of the monster group was provided in [Con85], and reviewed
in [CS99, Ch. 29]. See [Iva09] for another construction using the amalgam method.
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3 Modular Functions and Weak Jacobi Forms

This Section 3 collects the basic definitions and important examples of modular functions and
weak Jacobi forms. After mentioning the action of the modular group on the upper half-plane in
Section 3.1, we will review modular functions and weak Jacobi forms in Sections 3.2 and 3.3,
respectively. In the last Section 3.4, we will review the elliptic genes of CFT, through which weak
Jacobi forms appear in physics.

More details on the facts cited here about the modular functions can be found, for example,
in [Ser73, Ch. VII] and [DSO05, Ch. 1]. The foundational literature on weak Jacobi forms is [EZ85],
and we will follow a summary in [DMZ12, §4].

3.1 Modular Group

The special linear group

SL(2,Z) = {(Z Z)
T := (é 1) S = (2 _01) (3.2)

It acts on the upper half-plane of the complex plane

a,b,c,dGZ,ad—bc:l} 3.1

is generated by

H:={r € C|Im(r) > 0} (3.3)
as
a b\ ar +b
(C d).Tl—>c7_+d. (3.4)

If we define a complex torus as £, := C/(Z @ 7Z), then it is known that’ F, and E, are
isomorphic as complex manifolds if and only if there is ¢ € SL(2,Z) such thatg - 7 = 7'.

Since the center Zy = (—I) of SL(2,Z) acts trivially on H, we can say that PSL(2,Z) =
SL(2,Z)/(—1I) acts on H. This group PSL(2,Z) is called the modular group. However, in the
following discussions, it suffices to use SL(2,7Z). In fact, some literature also calls SL(2,Z) the
modular group.

Lastly, we remark that GL(2, Z) is generated by 7', S, and

—1 0
P ( ! 1). (3.5)

"This fact can be understood as follows [ES15, §5.1]. The lattice in the complex plane spanned by wi,ws € C
/
. P wy)  fa bY [we a b
is the same as the one spanned by w/, w5 € C such that (Wi) = (c d) <w1> where (c d) € SL(2,Z). (A
general GL(2,Z) transformation may reverse the orientation of the lattice.) In addition, a torus C/(w1Z & woZ) is
isomorphic to C/(Aw1Z & Aw2Z) where A € C, so we can regard the SL(2, Z) transformations on w1, ws as those on

w2

T = =2,
w1
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3.2 Modular Functions

Definition 3.1 (modular function and modular form).

(1) A meromorphic function f : H — C is called a weakly modular function of weight k € Z
if it satisfies

ar+b

f<C7'+d

)= (cr +d)*f(r) for any (‘CL Z) € SL(2,7), (3.6)
or equivalently,

Fr 1) = f(r), F(=2) =7k 5. 3.7)

T

From this periodicity under 7 — 7 4 1, we can regard f as a function of ¢ := 2™V -1,

(2) A weakly modular function f : H — C is called a modular function if, as a function of ¢,
it extends to a meromorphic function at ¢ = 0. In such a case, we will simply say that f is
meromorphic at ¢ = 0 or® at 7 = oo.

By this definition, a modular function f admits a Laurent expansion at ¢ = 0,
@) =" g™ (3.8)

(3) A modular function f : H — C is called a weakly holomorphic modular form if it is
holomorphic on H but not necessarily at ¢ = 0. That is, a pole is allowed to exist only at
q=0.

(4) A weakly holomorphic modular form f : H — C is called a modular form if it is holomor-
phic at ¢ = 0. In this case, f(oco) denotes the value of (the extended) f(7) at ¢ = 0.

(5) A modular form f : H — C is called a cusp form if f(c0) = 0.

There is no non-zero weakly modular function of odd weight. This is because, if £ is odd, we
have f(7) = —f(7) by applyinga = d = —1l and b = ¢ = 0 to (3.6).
Here are some examples of modular functions and modular forms.

8Here, oo denotes the point at infinity. Of course, as a limit, ¢ — 0 as Im(7) — oo.
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» Let & > 4 be an even integer. The Eisenstein series G (7) of weight k defined as follows is
a modular form of weight k.

CCS P S E——— (3.9)

k
(mmeziooy T )

= 2¢(k) + 2(27‘/_ ! SN dg (3.10)

c=1 d=1
2my/—1)F &
= 2¢(k) +2HZ(Z dk_l)q". (3.11)
(k o 1) n=1 “d|n
Here, ((k) := }_°, - is the Riemann zeta function, and its value for even & is known to
be (k) = — (27“2?) By, where By, is the Bernoulli number defined as % = >"7° | Zkak,
To calculate it, the recurrence relation By, = —k%l ?:—01 (kjl) B; and By = 1 are useful.
The normalized Eisenstein series
Eu(r) = - Gu(r) =1 2k i(Z d’“)q" (3.12)
ZC(k) Bk n=1 “d|n
is also frequently used. For example, since B, = —% and Bg = 45
720 = 3\ »
Ey(1) = W@(T) =14240) (> d*)q (3.13)
n=1 “d|n
=1+ 240q + 2160¢* + - - - (3.14)
30240
Eg(1) = he T Ge(r) =1 — 5042(2 d5> (3.15)
T
dn
=1 —504q — 16632¢> — - - - . (3.16)

* The modular discriminant A(7) defined as follows is a cusp form of weight 12.

A(T) := (60G4(7))* — 27(140G¢(7))? (3.17)
_ (27)12 3 2
= 178 (Ea(7)” — E6(7)7) (3.18)
= (2m) (7)™ (3.19)
=qJJa - (3.20)

where 7)(7) is the Dedekind eta function defined in Appendix B as (B.38). The normalized
one

A(r) = ———A(r) = n(r) (3.21)

is also frequently used.
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 The modular j-function or the j-invariant j(7) defined as follows is a weakly holomorphic
modular function of weight 0.

(60G4(7))®  Eu(r)’
A(T) A(7)
= ¢~ + 744 + 196884¢q + 21493760¢% + - - - . (3.23)

J(r) :=1728

(3.22)

The weight of j(7) being 0 means that j : H — C is a function which is also well-defined
on H/SL(2,Z). In addition, j : H/SL(2,Z) — C is known to be a bijection. As remarked
in Section 3.1, elements of H/SI.(2, Z) are in one-to-one correspondence with the isomor-
phism classes of complex tori as [7] <+ [E;]. Therefore, j(7) gives a complete invariant of
the isomorphism classes of complex tori.

» Let L be a positive-definite lattice of rank n. The theta function of the lattice L is defined as

OL(r) =Y ¢, (3.24)

kel

If L is even self-dual, then ©(7) is a modular form of weight .

For example, the theta function of the Ey lattice is ©p,(7) = E4(7). We can see it as
follows. The constant term of © g, (7) is of course O, (7) = 1 + O(q). As in the following
Theorem 3.2, the ring of modular forms is C[Fy, Fg|, so this constant term determines the
modular form © g, (7) of weight 4 as O g, (7) = E4(7). In particular, we can say that

N @E§93 (7)
j(r) = T (3.25)

More generally, we sometimes define the theta function O (7, 7) of a lattice L of signature
(r,s) (see (5.27)).

Obviously, all modular functions of the same weight constitute a C-vector space. In addition,
the multiplication of two modular functions of weight m and m’ is a modular function of weight
m + m’. Therefore, if we allow the sum of modular functions of inhomogeneous weights, then
we obtain the graded ring of all (the inhomogeneous sums of) modular functions. Furthermore,
its subrings are known to have the following structures. Let R[ X}, ..., X,| denote the polynomial
ring over a commutative ring R.

Theorem 3.2.

e The ring of modular functions of weight 0 constitutes the rational function field C(j).

e The ring of weakly holomorphic modular forms is C[E,, Eg, A™].

In particular, the ring of weakly holomorphic modular forms of weight 0 is C[j].

27



e The ring of modular forms is C[E,, Eg].

In particular, there is no non-zero modular form of weight k < 4.

» The ring of weakly holomorphic modular forms with integral q-expansion coeﬁ?czents (cn, €
Zin (3.8))is’ (Z|Ey, Eg, A]/~)[A™Y], where the relation ~ is defined by 1728A ~ (E,)* —

(Es)>.

» The ring of modular forms with integral q-expansion coefficients (c, € 7Z in (3.8)) is
Z|Ey, Eg, A]/~, with the above relation ~.

3.3 Weak Jacobi Forms

Definition 3.3. Let ¢ : H x C — C be a holomorphic function satisfying

ar+b =z k 2my/Tm < a b
go(m, p— d) (et + d)%e +dgp(7' z) for any . d) € SL(2,Z), (3.26)
o(T, 2+ AT+ p) = ef%ﬁm(’\%”)‘z)(p(ﬁ z) forany A\, p € Z, (3.27)

where k£ € 7Z is called the weight and m € Z- is called the index. These transformations are
equivalent to

1 z
p(T+1,2) = p(r 2), P(=2, 2) = P TIm p(r 2), (3:28)
o(1,2 4+ 1) = (T, 2), O(7,2 +7) = e 2VIIMTH2) (1 z), (3.29)

(The last transformation (7, z + 7) also follows from those of ¢(—2, 2) and ¢(7, z + 1).) From
the periodicity under 7 — 7 + 1 and z — z + 1, we can regard ¢ as a function of ¢ := eVl
and y := ¢>™V~1%_ We further assume that  admits a Fourier expansion

p(r,2) = Y cln,r)d"y". (3.30)

n,re€Z

(1) ¢ is called a weakly holomorphic Jacobi form if there exists ng € Z such that ¢(n,r) = 0
for n < ny.

(2) @ is called a weak Jacobi form if ¢(n,r) = 0 for n < 0.
(3) s called a (holomorphic) Jacobi form if c(n,r) = 0 for 4mn < r2.
(4) @ is called a Jacobi cusp form if ¢(n,r) = 0 for 4mn < r2.

9See https://mathoverflow.net/questions/386020/modular-forms-over-mathbbz-vs-modular-forms-with-integral-
fourier-coefficie.
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If we set m = 0, then (7, z) as a function of z is a holomorphic doubly-periodic function,
and such a function is known to be constant with respect to z. Therefore, a weakly holomorphic
Jacobi form of weight £ and index O is just a modular function of weight k. We can also say that if
©(T, z) is a weakly holomorphic Jacobi form of weight k& and index m, then ¢(7,0) is a modular
function of weight k. Similarly to the case of modular functions, there is no non-zero weakly
holomorphic Jacobi form of odd weight.

Important examples of weak Jacobi forms are'

o Ou(T, 2)?
©_91(T, 2): R (3.31)
O2(7,2)%  O5(7,2)%  04(T, 2)2)

#o1(72) ‘:4<92(7,0)2 B5(1,0)2 " G4(7,0)2 (3.32)

where 0;(7,z) (1 = 1,2,3,4) and 7(7) are the elliptic theta functions and the Dedekind eta func-
tion, respectively, introduced in Appendix B. These ¢y, ,, (7, z) are weak Jacobi forms of weight &
and index m.

Similarly to the case of modular functions, we have the graded ring of all (the inhomogeneous
sums of) weak Jacobi forms. It has the following structure. If we write the C-vector space of
modular forms of weight & as M, then recall that the graded ring of modular forms is @, ., M, =
ClEy, Eg)-

Theorem 3.4. Let J"°** denote the ring of weak modular forms of weight k and index m. The

k,m
ring of weak Jacobi forms has the structure

@ Jl:ffsk - (@ Mk) [0-21, 0,1 (3.33)

k€Z,meZ>0 keZ
= C[E4, Eg, p—21, %01 (3.34)

In particular,
Tek = @D Mira; - #Lo1000 " (3.35)

=0

Table 3.1: Generators of the ring of weak Jacobi forms.

weight £ index m | Fourier expansion
E, 4 0 1+ 240q + 2160¢> + - - -
FEs 6 0 1 — 504q — 16632¢> — - - -
21| —2 1 y—2+y ' =2y -2+y ) ’q+--
©o,1 0 1 y+ 104+ y~ 1+ (10y? — 64y + 108 — 64y~ + 10y~ 2)q + - - -

19The minus sign in (3.31) is needed to obtain ¢_o1(7,2) = (y2 —y~%)2 + - -, because we have v/—1 in the
definition (B.21) of 6.
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Extremal elliptic genus
As an example, the weak Jacobi form Z™=%(7, z) of weight 0 and index 4, starting with the

ext

terms
Z0N ) =y 0P+ +y) 4+ (3.36)

can be determined from (3.35) and Table 3.1 as

e 1 1 11 67
4 4(7> z) = 43_2906171 + 3 4902—2,190(2),1 + 97 69032,1900,1 + mEzwiQ,r (3.37)

This is an example of the N = 2 extremal elliptic genus defined'' by [GGKT08].

Definition 3.5 (V' = 2 extremal elliptic genus). We define the polar region of index m € Z~ as
P = {(n,r) € Z* |0 < n,4mn < r?,1 < r < m}, (3.38)

and the terms ¢"y" of the Fourier expansion of a function f(7,z) such that (n,r) € P™ are
called the polar terms of index m of f.

An N = 2 extremal elliptic genus Z™, (1, z) of index m or of central charge 6m is a weak
Jacobi form of weight 0 and index m such that its polar terms of index m coincide with the
polar terms of index m of the character of the Ramond vacuum representation'” of the N' = 2
superconformal algebra of central charge ¢ = 6m. Such polar terms can be explicitly calculated

as the polar terms of

SR || 1~ ngl_)tl); v'd), (3.39)

According to [GGK"08], the number of polar terms of index m exceeds the number of C-
linearly independent terms of Jgfﬁ,jk in (3.35). Therefore, an N’ = 2 extremal elliptic genus
Z7. (7, z) is unique if it exists. In addition, they showed that it exists only when m = 1,2,3,4,

5,7,8,11,13 for m < 36, and it does not exist for sufficiently large m. So they conjecture that
it exists only for the listed values of m. The N/ = 2 extremal elliptic genera for m = 1,2,3,4

I An extremal VOA is defined in [Hoe07] as a self-dual VOA of central charge c such that its minimal non-zero
conformal weight is greater than [i] (see also [HO8]). The extremal VOAs (CFTs) are studied in [Wit07] in relation
to three-dimensional gravity. Inspired by [Wit07], the A/ = 2 and N/ = 4 extremal extremal elliptic genera are
defined in [GGKT08].

2More precisely, the Ramond vacuum representation means the Ramond massless representation of conformal
weight 7 and U(1) charge ¢ [CDD™ 14, §7] (which is also called the Ramond graviton representation of the same
weight and charge [Egu04]). The quantity (3.39) is obtained as the %-spectral flow of the character of the NS vacuum
representation (the NS graviton representation of conformal weight 0 and U(1) charge 0 [Egu04]). This (3.39) is the
terms of the character of the Ramond vacuum representation, containing all its polar terms.
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are [GGK 08, BDFK15]

Z5H(1,2) = o, (3.40)
e 1 5

Zgi(7,2) = 5051+ g Eaplan, (341)
e 1 . 7 13

Lyt 3(T> z) = E‘Pg,l + 1_6E4902—2,1900,1 + 21 690312@ (3.42)
e 1 1 11 67

Lo 4(7'7 z) = 43_2%03,1 + §E4802—2,180(2),1 + 97 6803—2,1800,1 + mEZSOizl' (3.43)

3.4 Elliptic Genus

Weak Jacobi forms appear in physics as the elliptic genus of NV = 2 SCFT. (Be careful not to
confuse it with the extremal N' = 2 elliptic genus, which was purely mathematically defined as
above.) To explain what it is, let us begin with the Witten index of a chiral ' = 1 SCFT.

In the R sector of a chiral N' = 1 SCFT of central charge c, there is a supercharge G, such
that (G)? = Lo — 57 (see (4.23) below). We then have, for a general state |h) with Lj-eigenvalue
h in the R sector,

Cc

(Lo — SRy = h— &
Gol )2 = (hl(Lo — o )lB) =h — o,

(3.44)

C

where GG is a Hermitian operator. As a result, unless h = 51 Go|h) is a non-zero state. Since
[Go, Lo) = 0 and {Gy, (—1)'} = 0, where (—1)¥ is the fermion parity operator, we can say that
Go|h) is a state with the same L-eigenvalue and opposite parity compared with |h), when h # 7.
Therefore, |h) and Gy|h) cancel in the trace over the R sector Hg

Tryg,, (—1)FgRo 31, (3.45)

and only the states with 1 = 5 contribute. So the quantity (3.45) is a constant. A state with
h = 5; in the R sector is called a Ramond vacuum,” and the constant (3.45) is counting the
number of Ramond vacua with sign (—1)%. This constant is called the Witten index. (We can
also define the Witten index for a general (not necessarily conformal) supersymmetric theory in a
similar way.)

The elliptic genus is a concept similar to the Witten index. We define the elliptic genus of an
N = (0,1) SCFT which is non-chiral (consisting of left- and right-moving parts) as

Zan(r) = Ty, (—1)F+Fglodigho—sr, (3.46)

where H 5 is the Hilbert space of the entire R sector, and the objects without tilde and with
tilde ~ denote the objects in left- and right-moving parts respectively. The entire R sector has the
structure Hpyz = @, Hr,i ® Hg,» and by the discussion similar to above, we can say that the

3Be careful not to confuse |0)g introduced in (6.20) with a Ramond vacuum. In fact, the conformal weight of
|0)r of the n real free chiral fermions is {5 = €, and the theory is not supersymmetric.
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sectors containing the right-moving Ramond vacua P Hr,; ® H ; only contribute

% such that Hﬁ’izvac
to the trace (3.46). Therefore, the elliptic genus Z(7) is independent of §.

We regard a non-chiral N' = (A, N,) SCFT with A, > 0 and N, > 1 as a special case of
non-chiral N' = (0,1) SCFTs. If N; > 1, then it further follows that the elliptic genus Zey(7) is
independent of ¢, and hence a constant. We may then call it the Witten index.

If N; > 2, then the quantity
Za(7, 2) 1= Ty (— 1)+ yPoglo~digho=ai, (3.47)

where Jj is the U(1) charge (the zero mode of J(z)) of the ' = 2 superconformal algebra,'* is
also called the elliptic genus. In fact, this (3.47) is the traditional definition of the elliptic genus,
but recently, the scope of the term “elliptic genus” seems to slightly broadened so that it includes
the quantity Z(7) = Zen(7,0) in (3.46).

Moreover, for a fermionic chiral CFT, by regarding it as coupling to a trivial right-moving
N, = 1 theory, its elliptic genus is

Zen() = Trpg (—1)Fgho2. (3.55)

If the chiral CFT has A = 1 supersymmetry, then this is just the Witten index. If A > 2, then the
quantity

Zan(1,2) = Tryg (—1)Fy gm0 2, (3.56)

is also the elliptic genus.
Let us come back to the weak Jacobi forms. We consider a non-chiral N' = (2,1) SCFT of
central charge (c, ¢) or a chiral N/ = 2 SCFT of central charge ¢, such that the phases caused by

Y“The N' = 2 superconformal algebra of central charge c consists of the operators T'(2), J(2), G (2), G~ (2)
satisfying the following OPE:s:

c/2

T(21)T(2) ~ ) + o ZZ)QT(ZQ) L T (23), (3.48)
T(Zl)J(ZQ) ~ mJ(ZQ) + 71 — 2 8J(22)7 (349)
3/2 1
T(21)GF(22) ~ (Zl/zz)QGi(zQ) T 0G*(2), (3.50)
c/3
J(21)J (22) ~ m7 (3.51)
TG (22) ~ G (), (352)
. _ 2¢/3 2
G (21)G (22) ~ 1= ) + = 22)2‘](22) R (2T (22) + 0J(22)), (3.53)
G*(21)G*(22) ~ 0. (3.54)

These operators, T'(z), J(z), and G*(z) are called the energy-momentum tensor, the U(1) current, and the supercur-
rents, respectively.
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the gravitational anomaly in the modular transformations (E.1, E.2) are trivial, that is, 2(¢ — ¢) =
0 mod 24. If the U(1) charges (the Jy-eigenvalues) of the states in the NS sector of the SCFT
are all integers, and £ is a positive integer, then the elliptic genus Z (7, 2) in (3.47) or (3.56) is
known [KYY93] to be a weak Jacobi form of weight 0 and index &. (There is also the concept of
a weak Jacobi form of half-integer index.) The transformation (3.26) follows from the modular
invariance, and the transformation (3.27) follows from the spectral flow.

We have defined the extremal N' = 2 elliptic genera in Section 3.3. Constructing an SCFT
whose elliptic genus coincides with an extremal A/ = 2 elliptic genus is a nontrivial problem.
For example, Z=!(7, z) is the elliptic genus of the K3 CFT (Section 7) divided by 2. Dun-

ext
can’s module will be introduced as an N/ = 1 chiral SCFT in Section 6.2, but it also admits

N = 2 and N = 4 superconformal algebras, and its elliptic genus as an N/ = 2 theory is
Zm=2(1,2) [CDD"14]. An N = 2 chiral SCFT with elliptic genus Z™4(r, z) is constructed

ext ext

in [BDFK15] from the odd Leech lattice. There is also the concept of NV = 4 extremal el-
liptic genera ZmN :4(7, z) [GGK'08]. Duncan’s module as N/ = 4 theory has the elliptic

ext

genus Z"7*N=4(7,2). An N = 4 chiral SCFT with Z7*V=%(7. 2) is constructed in [Har16].

ext ext

See [FH17,KY23b] for more on SCFTs with extremal elliptic genera.
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4 Vertex Operator Algebras

The axiomatic definition of a VOA is somewhat technical. In many cases for physicists, it suffices
to consider the examples of VOAs introduced in the next Part II, whose constructions would be
more familiar from the viewpoint of CFTs in physics. We will not go into the proof that these
examples actually satisfy the axioms of a VOA. Even so, reviewing the definition of a VOA is
more or less helpful for understanding how VOAs mathematically formulate CFTs in physics, so
we will summarize it in this Section 4.

The historical development of the concept of VOA is summarized in [FLMS88, Introduction
§III]. It developed through three stages: vertex operator, vertex algebra, and vertex operator
algebra.

Vertex operator (a historical note)

Lepowsky and Wilson constructed a certain representation of the affine Lie algebra 5A[(2, C)in
[LW78], using the operators which are now called twisted vertex operators, which was generalized
to other affine Lie algebras in [KKLWS81]. Garland noticed the similarity between those operators
and the vertex operators in a physics theory called the dual resonance theory, and it was confirmed
that this resemblance can actually be made into a complete coincidence in the works by Frenkel
and Kac [FK80], and by Segal [Seg81] independently, where representations of the affine Lie
algebras were constructed using the (untwisted) vertex operators.

In [FLM84], Frenkel, Lepowsky, and Meurman constructed a representation, which we now
call the moonshine module V¥, of a certain algebra E;h, an “affinization” of the Griess algebra B,
using vertex operators. They also showed that the monster group M acts on V*, and the graded
character of V? is the modular j-function (without the constant term).

4.1 Vertex Algebras

Motivated by [FLM84], Borcherds [Bor86] introduced the axioms of a vertex algebra."> Follow-
ing [Har99, §5.2], they can be summarized as follows.

Definition 4.1 (vertex algebra). A vector space V' over a field K of characteristic O is called a
vertex algebra if it satisfies the following axioms.

(1) Forany v € V and any n € Z, a K-linear endomorphism v,y € End(V') is given.

We define a formal series Y (v, z) € End(V)][[z, 27!]] of z, called the vertex operator cor-
responding to v, as

Y(v,2):= Zv(n)z_”_l. 4.1

nel

SBorcherds posted on MathOverflow that his definition of a vertex algebra was purely motivated by an attempt
to understand the works by Frenkel, Lepowsky, and Meurman, and he did not use any insights from field theories in
physics, simply because he was barely familiar with such topics. https://mathoverflow.net/questions/53988/what-is-
the-motivation-for-a-vertex-algebra
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The map V' — End(V)][[z, 27 !]]; v — Y (v, 2) is often called the state-field correspondence,
and we require it to be K-linear.

(2) For any v, w € V, there exists n € Z such that v(,,yw = 0 for any m > n.

(3) For any u,v,w € V and m,n,q € Z,

> < . )(U(q+i>v)<m+n—z‘)w => (-1 < Z) [Wntq-1) (VW) — (=)0 (rg—i) (Un+iyw)]-
i>0 i>0

4.2)
This equation (4.2) is called the Borcherds identity (or the Jacobi identity).

(4) There is a specific element 1 € V called the vacuum vector, which satisfies for any v € V,
v(-1)1 = v, and v(,,)1 = 0 for any n > 0.

Following physics convention, any element v € V' of a vertex algebra V' is called a state, and
a vertex operator Y (v, z) a field, a current, or simply an operator. Sometimes v is also called a
current. The operator v, is called the n-th mode of the mode expansion of Y (v, ), or simply of
v.

The Borcherds identity (4.2) is equivalent to
20 (M) Y (u,2)Y (v, z)w — 2516 ( > Y (v, 29)Y (u, 21)w = 2,16 (

20

22— 2 21— 20

> Y (Y (u, 29)v, 22)w,
4.3)

—20 Z9

where

8(z)=> 2", (4.4)

21— 22\ =2\
5( ” >_Z( - ) (4.5)

nel

and we break down

into an infinite sum of the terms in the form of zéz{ 2%, under the definition

(a—b)" :=a"(1 — 9)” => (TZ) a" " (=b)"  forn < 0. (4.6)

a -
=0

In particular, (¢ — b)" is not equal to (—b + a)™ if n < 0, under this definition.

There are some variants of the definitions of vertex algebras. For example, [Kac98, CKLW15]
adopt the following definition. We will use'® the notation [A, B] := AB — BA.

16 [Kac98] deal with vertex superalgebras, rather than vertex algebras, throughout the entire book. The definition
of the bracket there is [A, B] := AB — (—1)I4IIBIBA. See also the description of vertex superalgebras in the main
text below.
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Definition 4.2 (vertex algebra (another definition)). A vector space V' over C is called a vertex
algebra 1if it satisfies the following axioms.

ey

2)

3)

“4)

For any v € V and any n € Z, a C-linear endomorphism v,y € End(V') is given.

The formal series Y (v, z) == Y, , vz """ is called the vertex operator corresponding
to v, and the state-field correspondence V- — End(V)[[z, z7']];v — Y (v, 2) is required to
be a linear map.

n

For any u,v € V, there exists n € Z such that u(,,)v = 0 for any m > n.

A formal series Y, , a,z" "' € End(V)[[z, 2~']] such that for any w € V, a,w = 0 for
sufficient large k is called a field. The vertex operators Y (v, z) are fields, and the state-field
correspondence is a linear map from V' to the space of fields.

For any v, w € V, there exists N € Z- such that
(20 — 21)™[Y (v, 20), Y (w, 21)] = 0. 4.7)
This condition is called the locality.

There is a specific operator 7' € End (V) called the infinitesimal translation operator, which
satisfies

[T,Y (v,2)] = diZY(U, 2) 4.8)

for any v € V. This condition is called the translation covariance.

(5) There is a specific element 1 € V called the vacuum vector, which satisfies 71 = 0,
Y(1,2) =idy,and vyl = v forany v € V.
|
Even if we replace the condition v(_11 = v with
Y (v,2)1],20 = v, 4.9)

we obtain an equivalent definition [CKLW 15, Remark 4.1]. We can also show [Kac98, Cor. 4.4

©]

[T,Y (v,2)] =Y (Tv,z2) = diZY(v, z). (4.10)

A vertex algebra of this Definition 4.2 satisfies the Borcherds identity (4.2) of Definition 4.1
[Kac98, §4.8].
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4.2 Vertex Operator Algebras

Finally, Frenkel, Lepowsky, and Meurman [FLMS88] introduced the axioms of a vertex operator
algebra. Following [Har99, §5.2], they can be summarized as follows.

Definition 4.3 (vertex operator algebra). A vector space V over a field K of characteristic O is
called a vertex operator algebra (VOA) if it satisfies the following axioms.

(1) V is a vertex algebra in the sense of Definition 4.1, with the state-field correspondence
v — Y (v, z) and the vacuum vector 1.

2) Y(1,2) =idy.

(3) There is a specific element w € V called the Virasoro element such that if we define L,, :=
W(n+1)s that is,

Y(wz)=)Y L,z "2 (4.11)

ne”L

then {L,, } .z satisfy the commutation relations of the Virasoro algebra

(L L] = (m — 1) Lo + 1—62(m3 — )0, (4.12)

where ¢ € K is called the central charge.

(4) Ly is diagonalizable on V', and its eigenvalues lie in Z. So the eigenspace decomposition of

V' with respect to L, defines a Z-gradingon V as V = @ V},.
heZ

If v € Vj, then v is called a homogeneous element of (conformal) weight or (conformal)
dimension h =: wt(v).

(5) Every subspace V}, is finite-dimensional, and there is A, € Z such that V;, = 0 for any
h < hmin-

(6) Foranyv €V,
d
Y(L_yv,z) = —Y (v, 2). (4.13)

In addition, a VOA is said to be of CFT type [DLMMO98], if h,;, = 0 and V = K1.

Following physics convention, the operator 7'(z) := Y (w, 2) is called the energy-momentum
tensor. We can show wt(w) = 2, because Low = LoL_51 = 2L_51 = 2w, using the Definition
4.1 of the vacuum vector 1 and (4.12).

There are some variants of the definitions of VOAs. For example, the corresponding concept
in [Kac98, CKLW15] is a conformal vertex algebra, which is defined as a vertex algebra V' in
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the sense of Definition 4.2, with a specific element w € V such that {L,},cz defined as in
(4.11) satisfy (4.12), Ly is diagonalizable on V' (which defines a C-grading on V' in general), and
L_1 =T (compare (4.10) and (4.13)).

Here is one caveat on the convention of the weight. From the axioms of VOAs, we can
show [Kac98, Eq. (4.9.3) and Theorem 4.10 (e)] that for a homogeneous v € V,

[Lo, U(n)] = —(TL +1—- Wt(U))U(n). (414)

Therefore, v,y maps V}, t0 V},_(n41—wt(v))- In physics literature, however, the usual convention is

Y(0,2) =) Vpniphys) 2 ", (4.15)
nez
and hence
U(n) = 'U(n+1fwt(v);phys)' (416)

Some mathematics literature e.g. [Kac98, CKLW15] also introduces this convention. Then

[L()av(n;phys)] - _nv(n;phys)7 (417)

and therefore v(y,;phys) maps V3, to V,_p,.

More on vertex algebras and vertex operator algebras

If a subspace W of a vertex algebra or a VOA V forms a vertex algebra or a VOA under the
same structure as V', then W is called a vertex subalgebra or a sub-VOA of V, respectively.

A module or a representation of a vertex algebra V' is a vector space M such that for any
v eV, afield

YM(v,2) = oihz " vy € End(M), (4.18)
nez
is given, the state-field correspondence v — Y™ (v, 2) is linear, YM(1,2) = idy,, and the

Borcherds identity (4.2) for them holds. A vertex algebra V' itself is a module of V', and sometimes

called the adjoint module. A (Zy-)twisted module of a vertex operator uses End(M)[[z¥, 2~ ~]]

(N € Z-o) instead of End(M)[[z, 2 !]]. Some literature [DL93] also introduces a concept we

may call “twisted vertex algebras”, which use End(V)[[z~, 2~ ~]] instead of End(V)[[z, z74]].
A vertex superalgebra introduces an additional Z,-grading V' = VO @ V! called the parity to

a vertex algebra, and the Borcherds identity (4.3) is generalized to the super version

2-a

20 <m> Y (u, 21)Y (v, 20)w — (—1)ll¥l 515 <

) Y (v, 2)Y (u, 21)w = 2716 (M) Y (Y (u, 2)v, 22)w,
20 %2

(4.19)

)
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where |v| := 0,1 forv € VO, V1, respectively. Correspondingly, the locality (4.7) is generalized
to

(20— 2)N (Y (v, 20)Y (w, 1) — (—D)PY (w, 2))Y (v, 20)) = 0. (4.20)

[DL93] further introduces generalized vertex algebras, which subsume both twisted vertex alge-
bras and vertex superalgebras as special cases.

A vertex operator superalgebra (VOSA) is a VOA with the parity Z,-grading V = V? @ V!
making it a vertex superalgebra, and the weight %Z—grading V = @ Vj instead of the Z-grading.

heiz
Sometimes V? = @ V, and V! = @ V, are further required [DMC14, §2.1]. Despite of its
heZ heZ+1

name “super,” a VOSA just describes a fermionic CFT in physics, not necessarily with a super-
symmetry. For the description of SCFT in physics, we introduce the following structures.

An N = 1 vertex operator superalgebra requires the existence of a specific element 7 € V3

2

such that if we define G, = et 1)s that is,

Y(rz)= Y Gz, 4.21)

TGZ-I—%

then {G, }, ¢z, 1 satisfy the N = 1 superconformal algebra

(L, Gv] = (%m . r) G (4.22)

(GG} =20+ 5 (7= )b (4.23)
together with (4.12). This element 7 or its operator G(z) := Y (7, 2) is called the supercurrent.
N =2 and N = 4 vertex operator superalgebras are also defined in a similar way, by requiring
the existence of elements whose corresponding fields satisfy the N' = 2 and A/ = 4 superconfor-
mal algebras, respectively.

As for more details on these definitions, see for example [DL93,Kac98,FBZ04] and references
in [DMC14, §2.1].

VOAs formulate CFTs from the viewpoint of state-field correspondence, while there is another
mathematical formulation of CFTs, called local conformal nets, which focuses on algebras of
local operators. These two formulations are useful in different situations, and the translation
between them is one of the research topics in the field of operator algebras. See for example
[CKLWI15,Kaw15,Kaw17].
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Part 11
Review of Moonshine Phenomena

This Part II is a review of moonshine phenomena and an introduction to important examples of
VOAs. The most classical example of moonshine phenomena is the monstrous moonshine, and its
underlying object, the monster VOA, is constructed as the Zs-orbifold of the Leech lattice VOA.
So, in Section 5, after the review of the monstrous moonshine, we will introduce the general
construction of lattice VOAs. Another well-established moonshine phenomenon is the Conway
moonshine. In Section 6, we will review that the Conway moonshine module, also known as
Duncan’s module, is constructed from a Clifford module VOSA, which describes the CFT of free
fermions. In the last Section 7, we will review a relatively new and notable example of moonshine
phenomena, the K3 Mathieu moonshine, whose mysterious nature is not fully understood yet.

5 Monstrous Moonshine and Lattice VOA

The monstrous moonshine is the first discovered example of a moonshine phenomenon, and the
origin of this research field. As we will review in Section 5.1, it was observed as an empirical
relationship between the monster group M and the modular j-function j(7), and theoretically ex-
plained by the existence of an underlying VOA called the monster VOA V%. The monster VOA V*
is the Zs-orbifold of the Leech lattice VOA. So we will review the general construction of lattice
VOAs in Section 5.2, and their Zs-orbifolds in Section 5.3. The structures of the automorphism
groups of these theories are also described.

5.1 Monstrous Moonshine

In 1978 and 1979, McKay and Thompson [Tho79b, McKO1] observed that the first several coeffi-
cients (except for the constant term) of the modular j-function

§(7) = q " + 744 + 196884g + - - - G5.1)
= Z Ciqi7 (52)
i=—1

can be written as simple sums of irreducible representation dimensions of the monster group M
as follows. The irreducible representation dimensions of M are, from the smallest one,

i |1 2 3 4 5 6 7
Xi(lu) | 1 196883 21206876 842609326 18538750076 19360062527 293553734298
(5.3)
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where ; denotes the i-th irreducible character of M. The coefficients of the modular j-function
are then

¢ = 196884 = x1(1) + x2(1), (5.4)
cp = 21493760 = x1(1) + x2(1) + x3(1), (5.5)
c3 = 864299970 = 2x1(1) + 2x2(1) + x3(1) + x4(1), (5.6)
cs = 20245856256 = 3x1(1) + 3x2(1) + x3(1) + 2xa(1) + x5(1) (5.7)

= 2x1(1) + 3x2(1) + 2x3(1) + xa(1) + x6(1), (5.8)
cs = 333202640600 = 4x1(1) + 5x2(1) + 3x3(1) + 2xa(1) + x5(1) + x6(1) + x7z(1),  (5.9)

The constant term of the modular j-function is not important in the sense that, even if we
change it, the key property of the modular j-function that it is the generator of the rational func-
tion field C(7) of the modular functions of weight O (see Thm. 3.2) does not change. So they
conjectured that there exists a graded vector space V' = @;° | V; such that it is a representa-
tion of the monster group M, and its graded character of the identity element 1y, is the modular
j-function without the constant term

J(7) = j(7) — T44. (5.10)

In addition, this graded vector space V' must have some nice property; otherwise, we can easily
construct it by just stacking the trivial representation ;. So they focused on the graded characters

= Try(g)q (5.11)

i=—1

of the elements g € M other than the identity 1y;. This character J,(7) is called the McKay—
Thompson series associated with g € M.

Recall (Section 3.2) that J;,,(7) = J(7) is the generator of the rational function field C(j) of
the modular functions of weight 0. Such a modular function f : H — C is invariant under the
action of the modular group SL(2,Z), so it is well-defined as a function f : H/SL(2,Z) — C
on the quotient space H/SIL(2,Z). It is known that the one-point compactification (the compact
space made by adding the point at infinity) of H/SL(2,Z), denoted by (H/SL(2,Z))*, is topo-
logically equivalent to a Riemann sphere, which is a surface of genus 0. Pushing forward this
observation (and an observation'” by Ogg [Ogg75]), Thompson proposed the following conjec-
ture in [Tho79a]: for each element g € M, there exists a subgroup I'; of the modular group
SL(2,Z) (more precisely, a congruence subgroup) such that (H/T';)* is a genus-zero surface, and

Tn 1975, Ogg already observed that a prime number p divides the order |M]| of the monster group if and only if
-1
(H/To(p)™)* has genus 0, where To(p) ™ = (To(p), % <0 0 ) ). This is an unofficial beginning of the monstrous
p

moonshine [Gan06a].
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J,(7) is the generator of the rational function field of the functions (H/I',)* — C over C. This is
the McKay—Thompson conjecture.

The McKay-Thompson conjecture was proven through the following progression. In [CN79],
Conway and Norton proposed the conjectural forms of I'; and .J,(7) for each element g € M. This
is called the Conway—Norton conjecture, or the monstrous moonshine conjecture. In addition,
they also showed that these conjectural I'; and J,(7) satisfy that (H/I';)* has genus 0 and .J,(7)
generates the rational function field of the functions (H/I';)* — C. Frenkel, Lepowsky, and
Meurman constructed a representation V' of the monster group M whose graded character is .J(7)
in [FLM84], and clarified its VOA structure and showed that its automorphism group Aut (V%) is
precisely the monster group M in [FLM88]. Finally, Borcherds showed in [Bor92] that the graded
character of g € M on V* coincides with the conjectured .J,(7) by the Conway-Norton conjecture,
for which he was awarded the Fields Medal.

The M-module V¥ constructed in [FLM88] is called the monster VOA or the moonshine mod-
ule. The monster VOA V! is constructed as the Z,-orbifold of the Leech lattice VOA Vry,, the
details of which are reviewed in the following Sections 5.2 and 5.3. In the language of physics, V"
is a chiral bosonic CFT of central charge 24, having the partition function .J(7) and the symmetry
M. Let us briefly review why this is the case.

In general, we can construct a chiral bosonic modular-invariant lattice CFT V, from a Eu-
clidean even self-dual lattice L of rank n = 0 mod 24. Such a lattice CFT V}, has central charge
n, and its partition function is

ZVD (1) == Try, [¢" 1] (5.12)
_ Ol (5.13)
n(r)"

For this partition function Z("2)(7) to start with the term ¢!, we should choose n = 24. So the
lattice must be an even self-dual lattice of rank 24, that is, a Niemeier lattice.

Now that Z(V2)(7) is modular invariant (a modular function of weight 0) starting with the term
¢~!, it must be in the form of J (1) 4 constant, and in fact, we have

ZVO (1) = J(1) + 24 + |Ly|. (5.14)

Here, | L;| is the number of lattice vectors with squared length 2 (as defined in (2.41)), and hence
|Ly| = 0 for the Leech lattice L = Ayy. In addition, 24 is coming from the states *,|0) (i =
1,...,24) of conformal weight (L(-eigenvalue) 1, and these states have odd parity under the Z,
symmetry £ — —Fk of the lattice L. Therefore, these 24 states are eliminated by taking the
Zs-orbifold, which retains the Zs-invariant states. As a result, the partition function of the Z,-
orbifold of the Leech lattice CFT Vj,, coincides with the modular j-function without the constant
term J (7).

The proof of Aut(V*) = M by [FLMS88] can be outlined as follows. As mentioned in Section
2.4, the monster group M is generated by a subgroup C'(Ayy) = 2'724.Co, and a specific order-2
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element 0. Recall that the isometry group of the Leech lattice A,y is the Conway group Coy.
Before taking the Zs-orbifold, the automorphism group Aut(V},,,) of the Leech lattice VOA is
a group extension 22*.Co, of Coy (Section 5.2.3). When we construct the Z,-orbifold Ve, we
add the twisted sector (Vi,, )tw as Va,, @ (Va,, )tw, and project them onto the Z,-invariant states
(Vap,)?® (Vi )2, which is V¥ (Section 5.3.1). The addition of the twisted sector makes the group
224.Coy acting on V), enlarge to 2'72*.Coy acting on V},, & (Va,, )ww» and the projection makes
21424 Coy into its Zy-quotient C'(Agy) = 21724.Co, (Section 5.3.2).

In this way, the subgroup C'(A,4) acts on the monster VOA V¥ naturally, but the construction
of the order-2 element o is quite nontrivial. While C'(Ay4) acts on the untwisted sector (Vj,, )° and
the twisted sector (Vj,,), separately, o € Aut(V*#) was constructed as an automorphism mixing
these two sectors, and called the triality operator in [FLMS88]. Its construction was revisited
by [DGM90a, DGM94], and explained in relation to an isomorphism between two Zy-orbifolds
by different kinds of Z, symmetries (Section 5.3.3). Finally, by showing that M generated by
C(My4) and o is the whole automorphism group Aut(V*), we have Aut(V*) = M. We also note
that another simple construction of V* and proof of Aut(V*) = M were provided by Miyamoto
in [Miy04].

Before proceeding, we remark that the automorphism group Aut(V') of a VOA V preserves
the Virasoro algebra (4.12) of V' by its definition, so we should be able to decompose the partition
function .J(7) of V¥ simultaneously into the characters of the monster group M and the characters
of the Virasoro algebra. The irreducible character'® chy,(7) of the Virasoro algebra of highest
weight h and central charge ¢ = 24 is

q\/?

cho(1) = @ (¢t —1), (5.15)
q1/24 1
chy(1) = mq (h € Zo). (5.16)
Here, we have
1/24 1 %
@~ g — 2P G17
=1+q¢+2¢*+3¢ +5¢" +7¢" +11¢°- - -, (5.18)

8We can generate a module V}, of the Virasoro algebra from the highest weight state |h) (a state defined as
Lo|h) = h|h) and Ly, |h) = 0 for any m > 0) as V}, :== Spanc{L_y,, - - L_m,|h) | m1,...,m; € Z=¢}. Since the

state L_,,, - -+ L_,,, |h) has Lo-eigenvalue my + - - - + my + h, the character of this module V}, is Try, [gZ0~31] =
/% g

"R YN p(N)gY = TR —21, using (5.17). However, this module V}, is not necessarily irreducible. When

h = 0, the state L_1|0) satisfies the defining properties of the highest weight state with A = 1 (for example,
Ly(L_1|0)) = (2Lo—L_1L1)|0) = 0), so the module V},—( contains the submodule V},—;. Therefore, the irreducible

1/24

module of highest weight 0 has the character %q’i (1 — q). Whether the module V}, with h > 0 is irreducible

or not depends on the values of weight h and central charge c, but for ¢ > 1, it is known to be irreducible. See for
example [DFMS97, Ch. 7], [ES15, Ch. 2] for more details.
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where p(/N') denotes the number of the partitions of the integer N (the partition function in number

theory). Therefore, J(7) is decomposed as (note that chy,(7) starts with the term ¢"~)
J(r) =) dichipa(7), (5.19)

where ¢, = 0 and

;= xa(1), (5.20)
¢h = xa(1), (5.21)
¢y = x3(1), (5.22)
¢; = xa(1), (5.23)
¢ = xs(1), (5.24)
¢5 = xs(1) + x7(7), (5.25)

We can see that the same representation y; of M appearing in the different coefficients c; (5.4)—
(5.9) are bundled into the representation of the Virasoro algebra, and the appearance of the irre-
ducible representation dimensions of Ml becomes simple.

Lastly, we briefly mention a generalization of the monstrous moonshine. In the language
of physics, the McKay-Thompson series (5.11) is an M-twisted partition function of V% with a
twisted boundary condition in the temporal direction. From the perspective of the general theory
of orbifolds (Section F.2), it is also natural to consider the twisted partition functions with twisted
boundary conditions in the spatial direction, or both spatial and temporal directions. (We remark
that the temporal and spatial twists are referred to as twining and twisted, respectively, in the ter-
minology of [GHV 10a, GPRV12]. In physics literature, both of them are usually called rwisted.)
Moonshine conjectures related to these twisted partitions were proposed by Norton in [Nor87],
by generalizing the work by Queen [Que81], and called the generalized moonshine conjecture.
After many steps by mathematicians (see for example [Carl7]), the final step of the proof of this
generalized moonshine conjecture was announced in [Carl2]. For more on monstrous moonshine
and its recent developments, see for example [Har99, Gan06a, GanO6b, DGO14, HHP22] and ref-
erences therein.

5.2 Lattice VOA

One typical construction of a VOA uses a lattice as an ingredient, and the resulting VOA is called a
lattice VOA. Before getting into its mathematical description, we first present a brief explanation
in the language of physics in Section 5.2.1. Then we see the construction of a lattice VOA in
Section 5.2.2. We also describe the automorphism group of the lattice VOA in Section 5.2.3,
because it plays an important role in moonshine phenomena.
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5.2.1 Physical Description

For a given lattice L, we can consider a CFT having L as a momentum lattice. If the symmetric
bilinear form of the lattice is of signature (r, s), and if it is diagonalized with respect to a certain
basis €1,...,€,€p11,...,€r1saS

r r+s
B = [ky} — k> fork=k.+k =) ke;+ » ke €L, (5.26)
i=1 i=r+1

where | @ |2 and | e |2 are some positive norms, then the partition function of the lattice CFT is

I
n(r) n(r)?

S Zqél’wiqé\sz 7 (5.28)
n(r) () 1=

ZVO (7, 7) = O (7,7) (5.27)

and the central charge of the lattice CFT is (¢,¢) = (r,s). If the lattice L is even self-dual,
then the partition function Z(V2)(7, 7) is bosonic and modular invariant'® up to the phases (E.1,
E.2) from the gravitational anomaly. An even self-dual lattice of signature (7, s) exists if and
only if » — s = 0 mod 8 [Ser73, Ch. V], so the phases from the gravitational anomaly vanish
if the lattice L further satisfies 7 — s = 0 mod 24, and then the partition function Z("2) (7, 7) is
completely modular invariant. If the lattice is Euclidean, then the resulting CFT is chiral. See for
example [ES15, §5.5] for more details.

We will mainly deal with the chiral cases in these notes. The states of a chiral lattice CFT are
C-linear combinations of the states in the form of

O/—lml e aziml |k>7 (5.29)
where |k) is the state with momentum vector k € L, my,...,m; € Zsg, and o ,...,a" (m €
Z~) are the creation operators corresponding to an Z-basis eq, ..., e, of L. Together with the

annihilation operators ozfn (m € Z~p) and the momentum operators ag such that the state (5.29)

is an eigenstate of af, with eigenvalue (e;, k), the operators {ozfn}jjeli"” satisfy the commutation

relations [al,, al,,] = (e;, €)M 0. The conformal weight of the state (5.29) is 3|k|* +
my + -+ - + m;. We also often use the creation-annihilation operators .. ..., " with respect

ms -

to an orthonormal basis €y, ...,e, of R" where the lattice L is embedded. They are related to

al ..., a" under a proper R-linear transformation, and their commutation relation is of course
AL
[ s ) = GiMmBmm 0.

If we introduce the chiral bosons X (z) = (X*(2));=1,_, which satisfy the OPE

XZ(Zl) . Xj(ZQ) ~ _5i,j 10g(21 — 22), (530)

"This follows from the formula (see e.g. [ES15, Eq. (5.166)]) of the modular S transformation O7,(—2,—1) =

7

A= (—V=17)"/2(/=17)*/20 . (7, 7), where G is the Gram matrix of L, and L* is the dual lattice of L. The

modular T transformation of © (7, 7) is easy.
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and whose mode expansions are given as (see e.g. [ES15, §1.8.1])

0X'(z) = —v-1 > T (5.31)

then we can describe the state-operator correspondence as (see e.g. [Pol07, §2.8])
i V-1

fm|0> N _ ]

(m—1)!

k) = Vi(z) ooz eV TG (5.33)

O"X'"(z) (m>1), (5.32)

where o< denotes that we ignore the cocycle factor.

The details of the cocycle factors are described in Appendix C, but here we give a brief ex-
position. To realize the appropriate commutation relations of the vertex operators Vi (z) o< :
eV=1X() . in accordance with whether Vi (z) is bosonic (the weight £|k[? is an integer) or
fermionic (a half-integer), we have to introduce a correction factor ¢ (p) satisfying

ce(p+ K)ew(p) = (—1)FFHEEE L (o + B)en(p) = ek, k) copr () (5.34)

to modify the commutation relations of : eV-1kX(2) g Aga result, an additional factor called a
cocycle factor € : L x L — {%1} which satisfies the 2-cocycle condition appears in the OPE of
the vertex operators Vj,(2) = : eV~ X&) - ¢, (p) as

Vi(21) - Vie(22) = (=D)FFPVL (2) - Vi) ~ ek, K) (21 — 22)" ¥ View (22), (5.35)

where we dropped O((z; — 2,)"**1) terms in OPE.

5.2.2 Construction of Lattice VOA

The foundational literature on lattice VOAs is [FLM88], and [Kac98, §§5.4-5.5] also provides a
detailed description. [DN99,Lam?20] contain readable summaries, and we will follow them. These
references except for [Kac98] deal with ordinary lattice VOAs constructed from even lattices, but
we also consider odd lattices in these notes, so the resulting VOA can be a VOSA to be precise
(see e.g. [DL93, Remark 12.38]). However, this distinction is not important for our purposes,
so we will be unconcerned about that point. In these notes, we always assume that lattices are
integral. We also always assume that lattices are Euclidean (positive-definite), and hence the
resulting lattice VOA formulates a chiral CFT in the language of physics. As for Lorentzian
lattice VOAs or more general VOAs to describe non-chiral CFTs (full CFTs in other words),
see [HKO05,Mor20, SS23].

The first step to constructing the lattice VOA V7, from a given lattice L is to furnish the lattice
L with a cocycle factor £. We will eventually use the specific cocycle factor ¢ required by physics
as in (5.34), but for a moment, let € : L. x L — Z, denote a general 2-cocycle to keep generality.
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We will use some basic concepts of group extensions throughout the rest of this Section 5. See
Appendix A for some basic facts on group extensions, although the description in this Section 5
is intended to be as self-contained as possible.

Let L be the central extension® of the lattice (as a free abelian group) L by Zy = (k| k2 = 1)

1—>Zy—L—L—0, (5.36)

specified by a 2-cocycle € : L X L — Z,. In other words, Lis Zy x L as a set, and if we write its
element as k™e* (k™ € Zy, k € L), then L is a group specified by the multiplication

L N A [ (5.37)

So, ¢* € Land ¢ correspond to ¢x(p) and € in (5.34) respectively, under k = eV-im,
Here is one comment on the normalization of the 2-cocycle. It follows from the 2-cocycle
condition

E(k,KNe(k + K K" = é(k, K + K")e(K' k"), (5.38)
that any 2-cocycle € : L x L — Zj satisfies
£(k,0) =£(0,k) =£(0,0) forany k € L. (5.39)
Furthermore, it is known that there exists a 2-cocycle € satisfying the normalization condition
£(0,0) = °, (5.40)

in any cohomology class in H?(L, Z), and it defines an equivalent extension Lto any 2-cocycle
in the same cohomology class (see the last paragraph of Section A.1). Therefore, we will always
assume that € is a normalized one as in (5.40), without loss of generality. Then, we can observe
that the multiplication of L is well-behaved in the sense that

m 0 L em k _  m+m ek (541)

m k ,.m' 0 _ m+m' k (542)

and hence there is no confusion if we just write x™ instead of x™e®. We will also just write e”
instead of x'e”.

Now L has the multiplication structure reflecting the OPE (5.34), but not yet the structure of
a C-vector space of states. So we would like to consider the group algebra C[ﬁ] of L over C,
but we have to identify x with eV=1" e C, in order to properly make ~™e* and "' e* be C-
linearly dependent. This is mathematically done as follows. We consider a representation C of

the subgroup Z, of L, where the generator x acts on C as multiplication by eV~1". We define

20 More generally, [FLM88] deals with the central extension L of L by Z, = (k | x* = 1). Furthermore, we would
like to consider the central extension by U(1) & R/2Z = (k)r/(k)2z later. Therefore, the discussions below avoid
using special properties for Zy, such as £(k, k') ~! = &(k, k).
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the L-module C{L} as the induced representation of L from it, or equivalently, the extension of
scalars of the module C from C[Z,] to C[L]:

C{L} :== nd%, ,, y1yC = C[L] ®cpz, C. (5.43)

Roughly speaking, C{L} is just a group algebra C[L] with k™ - e¥ = eV~ Tmmek,

The second step is to introduce the creation-annihilation operators. Let h = L ®; C be the
abelian Lie algebra, and h = h @ CJt,t~!] & CK be its affine Lie algebra with the Lie bracket

[a(m), o (m")] = (e, &y mbp 1w 0 K, (5.44)

where a(m) := a ® t" with a € h, m € Z, and the symmetric bilinear form (—, —) on L is
extended to h by C-linearity.

Let U (h) be the universal enveloping algebra of | (the algebra where a(m)c/ (m/)—a/ (m/)ou(m) =
[a(m), o/ (m’)] holds), and define the h-module M (1) as

M(1) == U(h) ®pscpock C, (5.45)

where h @ CJt] acts on C as a(m) - C = 0 (m > 0),”! and K acts on C as multiplication by 1.
As a vector space, M (1) is isomorphic to U (h~), which is the universal enveloping algebra of the
abelian subalgebra

h-:=ht 'Clt™Y, (5.46)

~

of b.
Finally, the lattice VOA V7, is defined as the C vector space

Vy, = M(1) ®c C{L}, (5.47)

with the VOA structure such as the vacuum vector and the state-field correspondence, which we
do not write down here. Any element of V, therefore can be written as a C-linear combination of
elements in the form of

ar(—my) - - ag(—my)er, (5.48)

where aq, ..., a0 € h =L ®zC,mq,...,my € Z~g,and k € L.
Letey,...,e, be an integral basis of L. The element e;, (—my) - - - ¢;,(—my)e” of V7, is usually
denoted by o™, ---a',, |k) in physics literature, where the commutation relation of the creation-

g . . - . ; -/ .
annihilation operators o, is [af,, ol /] = (e, €r)MOpmim 0. We also often use the creation-

annihilation operators ! := €;(m) (m # 0; see footnote 21) with respect to an orthonormal

2! Here, «(0) also annihilates the states, unlike the momentum operators usually denoted by o in physics as in
the previous Section 5.2.1. This is just a problem of conventions.
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basis e, ..., e, of R” where the lattice L is embedded. Their commutation relation is of course
i
[ my  m/

] = 5i,z‘/m5m+m',o-
The vacuum vector 1 of the lattice VOA Vy is 1 = €°. The Virasoro element w is given by

w = 1 >.€;,(—1)?1, and the corresponding operator is T'(z) = —3 >, : (0X"(2))? :. Then the

weight of the element (5.48), namely the eigenvalue with respect to L, can be calculated as
1
wt(ag (—my) - ag(—my)e™) = my + - +my + §]k|2, (5.49)

and this weight introduces the grading of the VOA V.

5.2.3 Automorphism Group of Lattice VOA

The group O(L)

Since the lattice VOA V7, is built on the central extension L of the lattice L, before directly
getting into the automorphism group of V7, it is useful to first investigate the automorphism group
of L.

We define the commutator map ¢ : L x L — Z by

e(k, K = é(k, KNE(K k). (5.50)

If € here is the specific one € in (5.34), then it immediately follows from (5.34) that € must satisfy
ek, k') = (=1)FFHRPIFE (1 ), (5.51)

so we have é(k, k') = gFFHRPIRE )
Forgetting the symmetric bilinear form on L, for a moment, we focus on the automorphism

group Aut(L) of just a free abelian group L, instead of the isometry group O(L) of the lattice L.
The proposition [FLM88, Prop. 5.4.1] states that

1 — Hom(L, Zs) — Aut(L, k) — Aut(L,é) — 1 (5.52)

is exact. (The proof is also reviewed in Appendix A.4.) The details of (5.52) are as follows.
Hom(L,Zy)=>Aut(L, k) maps n € Hom(L, Z,) to

i L—oL (5.53)
k™R s p(k)k™er. (5.54)
Note that 7 € Hom(L, Zs) is determined only from the values of n(e;), ..., n(e,), whereey, ..., e,
is a basis of L, and hence
Hom(L, Zs) = (Z,)". (5.55)
Aut(L, k) is defined as
Aut(L, k) == {f € Aut(L) | f(r) =k}, (5.56)
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and Aut(L, ¢) is defined as
Aut(L, ¢) := {g € Aut(L) | &(g(k), g(K)) = ek, K)}. (5.57)

Aut(L, k)=Aut(L, ¢) maps f € Aut(L) to

f:L>L (5.58)

k= f(eF), (5.59)

where the natural projection L= L of (5.36) is used.

Since 1 and « are the only elements of finite order in L, it follows that any f € Aut(f))
satisfies f(x) = k, and hence Aut(L, x) reduces to Aut(L) in the case at hand. However, this is
the special property for the extension by Z,_,. If we consider a more general extension, say by
Z.4~5, then we cannot reduce Aut(L, x) to Aut(L) (see footnote 20).

Let us recall that L is a lattice, more than just a free abelian group, and move on to the isometry
group O(L) of the lattice from the automorphism group Aut(L) of the free abelian group. If the
commutator map ¢ depends only on the bilinear form of the lattice L, say ¢(k, k') = kF* HEPIFT
then the isometry group O(L) is a subgroup of Aut(L, ¢) defined in (5.57). In addition, if we
define

O(L) := {f € Awt(L,x) | f € O(L)}, (5.60)
then we obtain the exact sequence [FLM88, Prop. 6.4.1]
1 — Hom(L,Zs) — O(L) — O(L) — 1 (5.61)

from (5.52).

Remark 5.1. For any g € O(L), it is known that there exists a lift § € O(L) of g such that
G(e*) = e* for any k € L fixed by g as g(k) = k [Lep85, §5]. Such lift g is called the standard
lift of g, and is sometimes of use in research. See for example [Bor92, Lemma 12.1], [M616,
§5.3], [VEMS20, §7] for some properties of the standard lift. (Remark ends.)

The automorphism group Aut(V})
Following [FLM&8S, §8.10] or [DN99, §2.3], the definition of an automorphism of a VOA is
as follows.

Definition 5.2 (automorphism of a VOA). An automorphism of a VOA V over C is a map F' :
V' — V such that

(1) itis a C-linear automorphism on the C-vector space V.
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(2) it preserves all the products.”? More precisely, F(v(,)(v')) = (F(v))m)(F (")) for any

v,v" € V and m € Z. Or equivalently, F o Y (v, 2) o F '=Y(F(v),z) forany v € V.
(3) it preserves the Virasoro element F'(w) = w, and hence preserves the grading of V.

Any element f of O(L) induces an automorphism F of a lattice VOA V7, which acts on the
state (5.29) as

Flag(=my) -+ oq(=my)e) = flar)(=ma) - flon)(=my) f(e), (5.63)

where f € O(L) was defined in (5.59) and extended by C-linearity here. This preserves the group
structure of O(L), and hence O(L) = (Z,)™.O(L) can be regarded as a subgroup of the automor-
phism group Aut(V7) of the lattice VOA V. The whole Aut(V7) is determined in [DN99] as
follows.

Theorem 5.3 ([DN99, Theorem 2.1]). For a positive-definite even lattice L, the automorphism
group Aut(V7) is generated by O(L) and N defined as

N = {exp(v) | v € Vi, wt(v) = 1}. (5.64)
In short,
Aut(Vy) = N-O(L). (5.65)
N is a normal subgroup of Aut(Vy), and N N O(L) contains Hom(L, Zy) C O(L).

Remark 5.4. We will not need the details of the subgroup N C Aut(V}) below, but here we
provide some explanation in this Remark.
An (even) derivation®® of a VOA V is a linear endomorphism D : V — V such that

* D(vm)(v")) = (D)) ) (V') + vy (D (")) for any v,v" € V and m € Z,

* D(w) =0.

22 A vertex algebra V in the sense of Definition 4.2 satisfies the Borcherds OPE formula [Kac98, Thm. 4.6]

Y (viyw, 22)
Yo a)¥ () = 3 s
n=0

+:Y(v,21)Y (w, 22) ¢, (5.62)

in the domain |z1| > |22 for any v,w € V. In view of this, the condition (2) of Definition 5.2 can be phrased as
“preserve OPE”.

2 An odd derivation [Kac98, §4.3] requires D(v(,)(v')) = (D(v)) () (V') + (=1)I*log,,) (D(v")) instead of the
first equation, but we do not use it in these notes.
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Combining these equations and Ly = w(1), we can see D(Lov) = Lo(Dv), and hence a derivation
preserves the grading of V. We can easily see that exp(D) is an automorphism of V.

For any element u € V' of weight 1, u ) is a derivation as follows. The first equation fol-
lows from [u(o),v(m)] = (u(o)v)(m) [Kac98, Eq. (4.6.3)]. To see the second equation, we have
[0y, L] = 0 from [u(ny, L] = (m — (wt(u) — 1)m)ugmimy [Kac98, Cor. 4.10 (iii)], and
hence u) (w) = uyL_21 = L_su(1 = 0, using the Definition 4.1 of the vacuum vector 1.

Therefore, exp(u o)) with wt(u) = 1 is an automorphism of V', called an inner automorphism
in [Kac98, Remark 4.9¢]. So

N = {exp(u()) | v € V,wt(u) =1} (5.66)

is indeed a subgroup of Aut(V},). Furthermore, N is a normal subgroup, because any F' € Aut(V)
satisfies F' o exp(u(p)) o F'~! = exp((F(u))()) and wt(F(u)) = wt(u) = 1.

For example, in the case of a lattice VOA V7, if we take the weight-1 element u as ei(—l)eo, or
o' 1]0) in physics notation, then u ) is the momentum operator «, described in Section 5.2.1 (see
also footnote 21), which corresponds to (¢;, —) € Hom(L,R). Recallingw = 3 >, &;(—1)%",
we can explicitly see that ofj(w) = 0. We can also see that exp(t)) € N is in Hom(L, Z,) for
appropriate ¢t € C, and this is the basic argument to show that N N O(L) contains Hom (L, Z,) C
O(L).

If the lattice L contains a vector k of squared length 2, then e € V7, is also a weight-1 element.
On the other hand, if L does not have a vector of squared length 2, then /N N O(I:) coincides with
Hom(L,Zy) € O(L), and Aut(V,) = N.O(L) [Lam20, Remark 2.3]. The Leech lattice Ay is
such an example. (Remark ends.)

As a study of the structure of Aut(17), we can consider the following question: does the
isometry group O(L) of the lattice L lift to a subgroup of the automorphism group Aut(V;) of
the lattice VOA V2 Now that we have seen that O(L) is a subgroup of Aut(V},), this question is
equivalent to whether the group extension (5.61) splits or not. This is the main subject of [Oka24].

5.3 7Z5-Orbifold of Lattice VOA

When a CFT 7 has a finite group symmetry G C Aut(7) and it is non-anomalous, then we
can construct a new CFT T /G consisting of G-invariant states, which is called the orbifold of 7
by G. The monster VOA V* is the orbifold of the Leech lattice VOA V), by the reflection Z,
symmetry X (z) — —X(z). So we review the orbifold V;, of a lattice VOA V, by the reflection
Zy symmetry in Section 5.3.1, and the automorphisms of the resulting theory V, in Section 5.3.2.
A lattice VOA has another Z, symmetry, the shift Z, symmetry X (z) — X(z) + 7y, and we
will review it and the relations between two orbifolds by the reflection Z, and by the shift Z,
in Section 5.3.3. This perspective of another symmetry was not explicitly used in the original
proof of Aut(V*) = M by [FLM88], but [DGM90a] revealed that it provides a clear way of
understanding the proof. Lastly, in Section 5.3.4, we will briefly review a uniform treatment of
Zy-orbifold and fermionization, although it is not directly related to the monstrous moonshine.
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5.3.1 Orbifold by Reflection Z, Symmetry

The reflection automorphism 6,
We first explain what the reflection Z, symmetry of a lattice VOA V7, is.

Proposition 5.5. Any lift 0 € O(ﬁ) of —idy € O(L) in the exact sequence (5.61) satisfies 0* =
id;.

Proof. Since e*-e™% = &(k, —k), we have e * = £(k, —k)(e*)~!. Hence, for a given k € L, there
is m € Z such that () = k™ (e”) . Therefore, by using 6(x) = r from the definition (5.60) of
O(L),

0%(e") = k™O(eF) ™t = KM meR = e, (5.67)
O]

Suppose the 2-cocycle € : L X L — Z5 is bihomomorphic, or we customarily say it is bilinear.
In fact, we will eventually use the bilinear one (C.13) for the 2-cocycle € appearing in (5.34).
Then, the map 6, : L — L defined as

Oo(K™e") = k™e ™" (5.68)
is a homomorphism, because
Oo(e" - e = &(k, e ™1, By(e¥) - O(e) = &(—k, —1)e ", (5.69)

and £(k,l) = é(—k,—l) by the assumption of bilinearity. ¢, is obviously an automorphism in
O(L), and hence it extends to the automorphism of V7, as in (5.63):

Oo(ar(—my) - oy (—my)ef) = (—ay)(—=my) - (—ay)(—my)e ™ . (5.70)

By Proposition 5.5, this 6, generates a subgroup Zs of Aut(V), and this is the reflection Z,
symmetry of the lattice VOA V7.
In physics notation, the action of , on a state is
Goai_lml _ o/_lml|k:> =(—a™, ). (—o/_’ml)|—k>, (5.71)

—m1

and this can be described as the reflection symmetry of the chiral bosons (5.31)

X'(2) = —X"(2) foralli=1,...,n. (5.72)

The 0y-twisted sector
The orbifold of a lattice VOA V, by the reflection Z, symmetry Zy = (6y) C Aut(Vy) is done
by the following two steps.

1. Introduce the Oy-twisted sector (V7).
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2. Project the whole V7, @ (V7)1 to the p-invariant states (V7,)° & (V7)2, =: V7.
The sectors>* can be summarized as

Zy = (by) ‘ untwisted twisted
even v (), . (5.73)
odd V)t (Vi

The construction of an orbifold by more general finite group symmetry is also accomplished by
similar two steps, as reviewed in Section F.2.1.

We review the construction of the twisted sector (V7). Let L be an even self-dual lattice
of rank n, and the 2-cocycle € be the specific one ¢ in (C.13) associated with the commutator
c(k, k') = " and the quadratic form ¢(k) = x2*", in the rest of this Section 5.3. As a result,
the action of 8y can be written as

Oo(e") = e = e(k, —k) (") " = w2’ (eF) 1, (5.74)

where in the last equation, we used the bilinearity of ¢ and Lemma A 4 (2) £(k, k) = q(k) = r2/*’.
If we follow [FLM88], we first define

K :={f(a)"'a|ae L} (5.75)
= {2 (") | ke L) (5.76)
= {* | ke L}. (5.77)

According to Theorem A.7, K is a subgroup of the center of L, and we have a central extension
1 —Zy — L/K — L/2L — 0. (5.78)

Similarly to the notation x™e* of an element of L, we may write an element of L /K as K" jyop.
We will built the twisted sector on an irreducible representation of Q = L/K.

A more physicist-friendly description of the group () is introduced in [DGM94, §5.3], so let
us follow it below. We define the gamma matrix algebra I'(L) associated with L as the unital (that
is, ['(L) contains 1 and hence C) C-algebra generated by {~x }rcy, satisfying

e = (U ypy = ek, K ypnr, 72 = (—1)2 7, (5.79)

If we identify ~; with e*, then I'(L) is roughly the algebra C{L} with the relation (e¥)? =
(—1)%“’“|2 introduced, which corresponds to the quotient by K.

We define a group Q := {£7, | k € L}. From the relations (5.79), it is obvious that |Q| =
217 In particular, if we take a Z-basis ey, . . ., e, of L, then

Q={EV1 Al h—on- (5.80)

Moreover, () is an extraspecial 2-group, which is defined as follows.

2(Vg)? and (V7)Y here in the main text are denoted by (V)% and (VI)% respectively in [FLMS8S].
V)%, (V)Y (V) (V)L and V7, here are denoted by H* (L), H~ (L), H; (L), H; (L), and H(L), respectively
in [DGMO94].
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Definition 5.6 (extraspecial p-group). A group G is called a p-group, if its order |G| is a power
of a prime p. A group G is called an elementary abelian p-group, if it is isomorphic to (Z,)" for
some n € Z-q. A group G is called an extraspecial p-group and denoted by p**", if the center
Z(G) of G satisfies Z(G) = Z, and G/Z(G) = (Z,)"™. |

It is known that for any extraspecial p-group p'*", n is even.
Proposition 5.7. Q) is an extraspecial 2-group 2'™".

Proof. We can show that the center of () is {31} as follows. If 7, is in the center of (), then

k- k' € 27 for any k' € L. This means % € L*, where L* is the dual lattice defined as (2.14).

Since we assumed L is self-dual, £ € 2L, and therefore 7, = 41 by using the relations (5.79).
Finally, Q/{%1} = L/2L = (Zy)". [

The irreducible representations of () are, the 2" one-dimensional ones of Q) /{£1} = (Z,)" ex-
tended so that they map the center {1} to 1, and the unique 2% -dimensional faithful one. We can
understand this 22 -dimensional irreducible representation as follows. We can show [DGM90b,
Appendix C] that () can be written as

Q= {3 A =01, (5.81)

using the usual gamma matrices (the Clifford algebra)

VY == (0 #5), A =& (5.82)
or equivalently {¥;,7;} = 2&;0,;, for some &; = +1. Then, the construction of the 22 -dimensional
irreducible representation can be done by the usual argument of representing 7; as the tensor
product of 7 Pauli matrices.

Among the irreducible representations of (), this 2 -dimensional one is the only one which
can extend to the representation of the whole algebra I'(L). (The other one-dimensional ones
cannot satisfy for example {7;,7,;} = 0.) Therefore, the gamma matrix algebra I'(L) have the
unique irreducible representation, which we will write X' (L), of dimension 2%

Remark 5.8. For more general even lattices L, the center of the group {£; | k € L} can be bigger
than {+1}. We still can construct its irreducible representations by a similar discussion using the
usual gamma matrices, but the resulting representations are not unique in general, because there
are degrees of freedom of assigning scalers &1, +1/—1 to the central elements. Such irreducible
representations have a common dimension smaller than 2% in general. See [DGM90b, Appendix
C] for more details. (Remark ends.)

We introduce the creation-annihilation operators ¢(r) (c € L ®z C,r € Z + %) satisfy

[c(r), ()] = (¢, )rérym o (5.83)
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Then the 0,-twisted sector (V) is constructed as the C-vector space spanned by the elements in
the form of

ci(—=r1) - al=m)|s), (5.84)

where ¢i1,...,¢ € L®z C, r1,...,11 € (Z+ 3)s0, and |s) € X(L). We also often use the
creation-annihilation operators C'. := €;(r) with respect to an orthonormal basis €, . .., €, of R"
where the lattice L is embedded.

The operators

Ln=5 Y :CCu: +%5m,0 (5.85)

TEZ""%

satisfy the Virasoro algebra (4.12) of central charge n. Then the state (5.84) is an eigenstate of Ly
with eigenvalue
n

7“1—|—"'+7“l+16-

(5.86)
Projection to 6y-invariant states

To complete the construction of the orbifold, we project the whole V;, & (V)i to the 6p-
invariant states (V7,)° & (V)0 =: V7.

Recall that 6, acts on V, as in (5.71)

Ooal 051 = —al , Oolk) = |—k). (5.87)

m?

Therefore, the §y-invariant (fy-even) sector (V7)° and the #y-odd sector (V,)! are

(V)? = Spang({(even number of o’ ’s)(|k) + |—k))}

@ {(odd number of o’ ’s)(|k) — |—k))}), (5.88)
(Vi)' = Spanc({(odd number of a’,’s)(|k) + |—k))}
@ {(even number of o ’s)(|k) — |—k))}). (5.89)

We extend the action of 6y on V7, to the action of éo on Vy, @ (V1)w by defining

n

0oCi0;t = —cl,  g|s) = (—1)F|s). (5.90)

T

Recall that the rank n of an even self-dual lattice L is a multiple of 8. Then, the éo—even sector
(V)2 and the 0y-odd sector (V)1 are

(V)2 = Spanc{states in (V) with an integer Ly-eigenvalue (5.86)}, (5.91)
(V)i = Spanc{states in (V1 ), with a half-integer Lo-eigenvalue (5.86)}. (5.92)

We finally define the orbifold V7, of the lattice VOA V. by the reflection Z, symmetry as
V= (V) @ (Vi) (5.93)
The results of [FLM88], [DGM94, Lemma 5.3, Theorem 5.4] show that
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(V)% is a sub-VOA of V7. (This holds for a general Euclidean even lattice L.)
« (V)Y is a module of (V)°.

« Vi = (V)" @ (V)Y has a structure of VOA, extended from that on (V7,)°.
(This holds for a general Euclidean even lattice such that V2L* is also even.)

From the last point, we can indeed call the Lj-eigenvalue (5.86) the weight.
The reflection Zy orbifold V},, of the Leech lattice VOA is called the monster VOA or the
moonshine module, and denoted by V2,

5.3.2 Automorphisms of Reflection Z, Orbifold

As mentioned in Section 2.4, the monster group M is generated by a subgroup C'(Ay,) = 21724.Co,
and a specific order-2 element o. In the proof of Aut(V*) = M, the subgroup C'(Ay4) is com-
ing from automorphisms acting on (Vj,,)? and (Vj,,)?, separately. In this Section 5.3.2, we will
review these automorphisms, following [FLM88, §10.4] and [DGM94, §6.1].

The group O(L)/(f,) acting on the untwisted 6,-invariant sector (V)"

Let us begin with the automorphisms of the untwisted 6,-invariant sector (V7)°. Recall that
V, was built on L, and O(L) is a subgroup of Aut(V7). Since 6, € O(L) acts on (V;,)° trivially,
Aut((V;)°) has a subgroup O(L)/(f,). In the exact sequence (5.61), ) is a lift of —id;, € O(L),
so we have

1 — Hom(L, Zy) — O(L)/(8y) — O(L)/{=£id.} — 1. (5.94)

Since K defined in (5.75) is preserved by 6, as a subgroup of L, the group O(L)/(6,) is a
subgroup of Aut(L/K). Recall ) = L/K. We define the natural group homomorphism

¢ O(L) — O(L)/{6) € Aut(Q). (5.95)

The entire automorphism group Aut(Q)) of the group @) can be described as follows. Recall
that the group (Q = L/ K satisfies the exact sequence (5.78), similar to (5.36). As a result, similarly
to (5.52), we have” the following exact sequence [FLM88, Prop. 5.4.5]

1 — Hom(L/2L, Zy) — Aut(Q) — Aut(L/2L,q) — 1, (5.96)

where q(k) = rz*?|,__, is the quadratic form and Aut(L/2L,q) := {g € Aut(L/2L) |

q(g(k)) = q(k)}. n € Hom(L/2L,Z,) acts on v, € Q as 7(v) = n(k)y, and f € Aut(Q)
maps v € () to £y Here, from the exact sequence (5.78), we regarded k of 7, € @ as an

element of L/2L.

ZPrecisely speaking, we first have to consider Aut(Q, ) := {f € Aut(Q) | f(k) = &} similarly to (5.52),
but in the case at hand, since the center of @ is {1,x}, any automorphism of ) maps  to %, so we just have

Aut(Q, k) = Aut(Q).
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Since the quadratic form ¢ only depends on the bilinear form of L, Aut(L/2L,q) contains
O(L)/{#£id.} as a subgroup. By restricting the exact sequence (5.96) from Aut(L/2L,q) to
O(L)/{#£id.}, we obtain a subgroup of Aut(()). The restricted exact sequence coincides with
(5.94), and therefore this subgroup of Aut(Q) is exactly O(L)/(6;).

The group Cx () acting on the ()-module X' (L)

Next, we consider a certain subgroup of the linear automorphism group Aut(X'(L)) of X'(L).
Since X'(L) is a Q-module, we have Q@ C Aut(X(L)). The normalizer’® Nauyx(1))(Q) of @ in
Aut(X (L)) is defined as

Nauwxn)(Q) ={f € Aut(X (L)) | fQ = Qf} (5.97)
={f € Aut(X(L)) | fo 7" € Aut(Q)}. (5.98)

In other words, for any v € @), if we write the action of f € Aut(X' (L)) as
f(yls)) = f(n)fls)  forls) € X(L), (5.99)

then f(y) = fovyo flisagainin Q if f € Nayya () (Q). It is known [FLM8S, Prop. 5.5.3]
that we have the following exact sequence

of—1
1 — {idy)} = Nawm)(Q) 220 Aut(Q) — 1. (5.100)

When we extend an automorphism on X' (L) to that on (V7 )i, we will need O(L) which
acts on the creation-annihilation operators ¢(r). In (5.100), the source of it is the subgroup

~

O(L)/{0o) of Aut(Q). We define a subgroup Cx(ry of Naus(x(r))(Q) by restricting the exact
sequence (5.100) as

A

° —1
1 — {idyy} = Cy 2220 O(L)/(60) — 1. (5.101)
Note that, in addition to (5.100), Naus(x(z)) (@) also satisfies the exact sequence

[ fof !

1— Q — NAut(X(L))(Q) _— Aut(L/QL, q) — 1, (5102)
and correspondingly,
[ fof! :
1= Q= Cxqy ——— O(L)/{£idr} = 1. (5.103)

(5.102) can be shown as follows. Combining (5.96) and (5.100), we have Naux(1)(Q) =
2.Aut(Q) = 2.(2".Aut(L/2L, q)), and the homomorphism Nayx () (Q) = Aut(L/2L,q); f —
f e f~1. The kernel of this homomorphism obviously contains @ because Y,y = = £y, and
this group @ has order 2!, which exhausts the order of the whole kernel. So we obtained the
exact sequence (5.102).

26The normalizer of a subset H of a group G is defined as Ng(H) := {g € G | gH = Hg}. If H is a subgroup
of G, then N¢(H) is the largest subgroup of G which contains H as a normal subgroup, hence its name.
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The group C/(L) acting on the whole V, & (V)

In order to extend the action of C'x(zy on X'(L) to the action on (V7,)s,, we want the action of
g € O(L) on the creation-annihilation operators ¢(r) — g(c)(r), so we would like to revive O(L)
instead of O(L) /(). This also incorporates the action of O(L) on the untwisted sector V7, at the
same time.

We define

C(L) == {(f, frw)) € O(L) x Cxwy | o(f) = frw) ® fry € O(L)/{60)}. (5.104)
It can be summarized into the following commutative diagram.

C(L) = 2"".0(L)
/{(60,idx (L)) /((id;,—idx (1))

Cleqry = 21+7.(O(L) /{%id, }) O(L) = 2.0(L)

m /

O(L)/{0o) = 2".(O(L)/{*id.})

(5.105)
Here, we have the exact sequence
oy 1 A ) f
15 Q 220 ey LI gy (5.106)

where v @ v7! € Aut(Q) in (5.100) is regarded as an element of Hom(L/2L,Z,) C Aut(Q) as
in (5.96), and extended to an element of Hom(L, Zy) C O(L). In fact, vy = k(K )y for
some 7, € Hom(L, Z,).

The action of F' = (f, fx(1)) € C(L) on VJ, is the one already defined in (5.63),

Flai(=mq) - ay(—=my)e®) = floq)(=ma) -« fla)(—r) f(€"), (5.107)
and the action on the state (5.84) in (V7 )4y, is defined as
Fey(=r) - a(=m)ls)) = Fler)(=r1) - fle)(=r) fry(]s))- (5.108)

As a result, C (L) acts on the whole V, & (V1)1

The group C/(L) acting on the Z,-orbifold V;, = (V) @ (V;,)?,,

Now, we can see that 6 defined in (5.90) is (6, (—=1)8idx(p)) in C(L). Therefore, the group
C(L) := C(L)/{(80, (—1)Fidx(z)) acts on the fy-invariant sector V;, = (V1)° @ (V)?,. From
(5.106), we have

1—-Q—C(L)— O(L)/{£id.} — 1. (5.109)
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When 7 is an even multiple of 8, then C'(L) coincides with C'x(zy. When n is an odd multiple
of 8, for example when L is the Leech lattice Aoy, then C'(L) fits into the commutative diagram
(5.105) as follows.

_ 21+n

((B0,idx (1)) . 1d " N@)
X (L

C/y(L) = 21+n ( /{:l:ldL} = 21+n /{:l:ldL} nO(L)

O(L)/(8o) = 2".(O(L) /{+id.})
(5.110)

In particular, when L is the Leech lattice Aoy, then C'(Agy) = 21424 (Co,, which we mentioned in
Section 2.4.

5.3.3 Triality and Shift Z, Symmetry

The triality operator o

From a given even self-dual lattice L, we have seen that we can construct two VOAs; one
is the lattice VOA V7, and the other is the orbifold V. of it by the reflection Z, symmetry. We
also explained in Section 2.3.1 that from a double-even self-dual binary code C, we can construct
two even self-dual lattices; one is A(C) by Construction A, and the other is A(C) by the twisted
construction. As a result, from a double-even self-dual binary code C, we can consider four
VOASs, that is, Vi (). Vic)» Va(e)» and Vi ). It was pointed out in [DGM90a, DGM94] that there
are isomorphisms ¢ among these VOAs, and this will provide one description of the proof of
Aut(VH) = Mas M = (C(Aygy), o).

Recall that A(C) = A¢(C) U A4(C) and A(C) = Ao(C) LI A5(C) in the notation®” of (2.34)—
(2.37). If we write the sector consisting of the states in the form of (5.29) with & € A;(C) as
VAZ-(C), then

Vae) = Vaoie) ® Var(o)s (5.111)
Vie) = Vaole) ® Vas(o)- (5.112)

2IThe correspondence of the notations between [DGM94] and [FLMS88, §12] is, in a situation where n is an odd
multiple of 8,

[DGMY94] A(C) Ao (C) L As (C) Ao (C) Ay (C) Ay (C) A3(C) 0,03 o071 Nothing
[FLMSS] LO L1 AO A2 A3 A1 g T o1 '

Our main text basically follows [DGM94], but we will use 7 instead of o1 in Remark 5.9. We also use

these notes
[FLM&S]

Vaiey Vanoey (=0,1,23 V9 V!
VAj V./(] (.] = 07 2a 37 1) ‘/o+ Vo_ .
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In particular, since Ay(C) is also a lattice, V), (c) forms a VOA.
We can also introduce similar decompositions to the twisted sectors (VA(C))tW and (V;\(c) )tw as

follows. If we decompose the irreducible representation X'(A(C)) of T'(A(C)) and that X' (A(C))

(
of T'(A(C)) into irreducible representations of I'(A¢(C)), then we obtain X (A(C)) = Xp(Ao(C)) ®
X1 (Ao(C)) and X (A(C)) = Xy(Ao(C)) ® Xs5(A(C)), respectively. The dimensions of X' (A(C))
and X(A(C)) are 2%, and those of X;(Ay(C)) are 27 ' (see Remark 5.8). If we write the sector

consisting of the states in the form of (5.84) with |s) € X;(Ao(C)) as Vi, (ay(c)), then

(Va))w = Vayaoe) ® Vaiao(0)): (5.113)
(Vi) = Vao(ao(e) ® Vas(ao(e))- (5.114)

We further decompose these sectors into fo-even sectors, denoted by the superscript °, and
6p-odd sectors, denoted by the superscript . As a result, the four VOAs can be summarized into
the following diagram.

Ve Vie
[ [
(Vo))" (Vaoe)°
o B
Viey = (Va©)” @ (Vage)' @ (Vas)® @ (Vayo)! (5.115)
~ ® B
Vaey = (Va©)? @ (Vo) @ (Vawoe))” © (Vaiaoe))”
® o

(VAl(C)>1 (VXs(Ao(C)))O

At the end of Section 5.3.1, we mentioned that (V) is a sub-VOA of V7, for an even lattice L.
Since Ao(C) is an even lattice, (Vi (c))" is a sub-VOA of V). Moreover, every sector (Vi,c))”
and (Va,(a(c)))? (¢ = 0,1,2,3 and p = 0,1)** has the structure of irreducible representation of
(Vao(c))? [DGMY4, Prop. 7.1].

[DGM90a, DGM94] constructed a map o acting on these sectors as

® ®
(Vao(e))” (Vao(e))°
®
Vao©@)®  (Vage)? (Vas)” (Vas)'
I 10 I ; (5.116)
Vao@)”  (Va©@)”  (Vaomoe))”  (Vawtaoep)”
O

Vae) (Vayaoey)®
O O

28See [DGM94] for the details of the sectors with i = 2.
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and

(o VA(C) — VA(C); (5.117)
(o V[\(C) — VA(C), o VA(C) — VJ\(C)v (5.118)
o Vaey = Vacey (5.119)

are all isomorphisms of VOAs. This map o is called the triality operator. This map mixes the
untwisted sector and the twisted sector of V3 .

Remark 5.9. While o preserves the first and fourth rows of (5.116), there also exists a map 7
(see footnote 27) which preserves the first and second rows of (5.116). These operators ¢ and 7
generate a group (o, 7) isomorphic to the symmetric group S3, hence the term triality operator.
(Remark ends.)

For example, in the case where C is the binary Golay code Go4, we can see from Table 2.2
that V(¢ is the lattice VOA V4,24 of the (A;)** Niemeier lattice, VA(C) = Vi is the Leech
lattice VOA V,,,, and \N/A(c) is the reflection Z, orbifold f/A2 , of the Leech lattice VOA, that is, the
monster VOA V.

The shift Z, symmetry

We briefly review that, from the viewpoint of physics, the CFT Vj (. introduced above can be
regarded as the orbifold of the CFT Vj(¢) by its shift Z; symmetry.

If we consider an even self-dual lattice A(C) constructed by Construction A from a doubly-
even self-dual code C, the resulting CFT has the shift Z, symmetry with respect to the shift vector
X = \/%f € A(C) as

X(z)— X(z) + 7x, (5.120)

Vi(z) o<z eV X@) oy oV=lmkxy, () = { ‘_/’C‘Z()Z) EZ E ﬁ?ggi% : (5.121)

In terms of O(L) C Aut(V}) in (5.61), if we define x* := (x,—) € Hom(L,Z), the shift Z,
symmetry is the subgroup Z, C O(L) generated by (x* mod 2) € Hom(L, Z,) € O(L).

Then we can also consider the states under the twisted boundary condition by this shift Z,
symmetry. The even and odd sectors of the untwisted and twisted sectors under the action of the
shift Z, symmetry can be described as (see for example [LS19, Appendix A], [KNO23b, §2.2])

shift Z, ‘ untwisted twisted
cven VAO ©) VA3 ©) . (5 . 122)
odd Ve Va

Recall that V) denotes the sector consisting of the states in the form of (5.29) with & € A;(C).
As aresult, the orbifold of the CFT V) (¢) by its shift Z; symmetry consists of the even sectors
Vao(e) @ Vas(c)> which is precisely the CFT Vj ). So we can say that the isomorphism o : Vi(¢) =

62



VA(C) in (5.118) is the isomorphism between the reflection Z, orbifold and the shift Z, orbifold of
the lattice CFT V) (¢ constructed from a doubly-even self-dual code C.

In fact, the triality operator o is constructed in [DGM94, §7] as follows. In the CFT V) (¢), for
each axis of the lattice A(C), there exists an $11(2); current

]_ 1 Jc(ZQ)
Ja(21) Jp(22) ~ §5abm + vV _1€abcm7 (5.123)
as
v/ —1 i
Ji(z) = WGX (2) € (Vo))" (5.124)
1
Jo(z) = _E(vﬁei(z) + V. 56,(2) € (Vay) (5.125)
V-1
J3(z) = T(Vﬁei(z) —V_ e, (2) € (Viaye)"- (5.126)

The operator o is constructed so that it implements the SU(2) rotation J; <> J; and J3 — —Js.
As a result, the reflection Zs symmetry J; — —J1, Jo — Jy, J3 — —J3 is essentially equivalent
to the shift Z, symmetry J; — Jy, Jo — —Jy, J3 — —Js.

We refer the reader to [KNO23b, KY24] for the shift Z, symmetries of more general lattice
CFTs, and their orbifolds (and fermionizations).

5.3.4 Zs-orbifold and Fermionization

In the modern understanding of fermionization [Tac18, KTT19] (see also [HNT20, BSZ24]), we
can uniformly treat Z,-orbifold and fermionization. Let us briefly review it.

In general, suppose a theory 7 has a non-anomalous Z, symmetry, and the even and odd
sectors of the untwisted and twisted sectors are

Zio ‘untwisted twisted
S U . (5.127)
T V

even
odd

By orbifolding 7 by the Z, symmetry, a new Z, symmetry emerges,”’ and we obtain the following
orbifold theory:

(orbifold) ‘ untwisted twisted
even S T . (5.128)
odd U Vv

2If we write the partition function of the theory 7 on a torus twisted by the original Zy symmetry in spa-
tial and temporal directions as Z (T)gi (as,ar € {0,1}; see also Section F.2.1), then the new Zs symmetry of
the orbifold theory 7 is Z(T)Zl = %Zamate{O’l}(71)“Sbf*‘“b5Z(T)Zi. More generally, if the original the-
ory T[A] is on a surface ¥ and coupled to the Z, gauge field A € H'(M;Zs), then the orbifold theory is
T[B] = m ZAeHl(E;ZQ)(_l)fZ A~BTIA]. See for example [BT17, §2], [LOZ23, §2.5], [BSZ24, §2]

for more details.
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By fermionizing 7 by the Z, symmetry, on the other hand, we obtain a fermionic CFT. There
are two ways of fermionization:

(fermionic) ‘ NS R (fermionic’) ‘ NS R
(-H)f=4+1| 85 U (-D)f=41|8 T . (5.129)
(-)F=-1|V T (-)F=-1|V U

Here, NS and R denote the Neveu-Schwarz sector and the Ramond sector, respectively. In terms
of a fermionic field 1(z), the NS sector satisfies the periodic boundary condition v(e>™V~1z) =
1(z), and the R sector satisfies the anti-periodic boundary condition™ (2™ ~12) = —i(2).

Remark 5.10. It is tempting to regard the NS/R sectors as the untwisted/twisted sectors by some
Zy symmetry. In fact, in mathematics, the NS sector and the R sector are usually formulated
as a VOSA and its canonically-twisted module respectively (see Section 6.1.1). However, from
the perspective of physics, it is natural to distinguish the NS/R sectors and the untwisted/twisted
sectors, as the former is specified by the spin structure, but the latter is specified by the Z, gauge
field of the theory. See also footnote 58. (Remark ends.)

Remark 5.11. As remarked in Section 5.2.1, if we used an even self-dual lattice of signature (7, s),
then we obtain a bosonic lattice CFT of central charge (c, ¢) = (, s), which is modular invariant
up to the phases (E.1, E.2) from the gravitational anomaly v = 2(¢ — c¢). Recall that the signature
(r,s) of an even self-dual lattice satisfies 7 — s = 0 mod 8 [Ser73, Ch. V]. More generally,
it is known that the gravitational anomaly of a bosonic CFT with central charge (c, ¢) satisfies
2(¢ — ¢) = 0 mod 16. Therefore, if we are given a fermionic CFT with central charge satisfying
2(¢—c) = 0 mod 16, then we can bosonize it as a reverse operation of the fermionization [BSZ24].
(Remark ends.)

Lattice CFTs constructed from more general codes over finite fields, and their orbifolds and
fermionizations, are investigated in [GJF18, Yah22, KY23a, KNO23b, KY24]. Recently, the con-
struction of CFTs from quantum codes through Lorentzian lattices was established in [DS20a,
DS20b], and has been developed in many directions; see for example [DS20c, DS21, BDR21,
ACD22,DK22], [HKM22], [Fur22,Fur23], [BR23], [KNO22,AKN*23,KNO23a,KNO23b,AKN24].
We also note that [HM20] established a relation between a certain quantum code and a particular
K3 CFT studied in [GTVW13] in the context of Mathieu moonshine.

30 If we move to the cylinder coordinate ¢ = o' + /=102 defined as z = e~ V=17, since they1(0) = w(z)(g—i)%,
the NS sector is anti-periodic cy1(0 + 2m) = —1)gy1(0), and the R sector is periodic ©ey1 (o + 27) = ey (o).
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6 Conway Moonshine and Clifford Module VOSA

The Conway moonshine was first established in [Dun07] as an A" = 1 VOSA V/ % such that its
automorphism group preserving the A/ = 1 structure is isomorphic to the sporadic Conway group
Co;. Compared to the monstrous moonshine, which was led by the existence of the modular
function, the Conway moonshine usually emphasizes the existence of such a VO(S)A with the
Conway group symmetry itself. The Conway moonshine module V/* is a kind of Z,-orbifold of
the VOSA describing 24 real free fermions. So we first review the construction of the VOSA of
free fermions as a Clifford algebra module in Section 6.1, and then the construction of V¥ and
the Conway group action on it in Section 6.2. We finally review the statement of the Conway
moonshine in Section 6.3.

6.1 Clifford Module VOSA

In this Section 6.1, we review the construction of the VOSA of free fermions as a Clifford algebra
module. In Section 6.1.1, we will introduce the Clifford algebras Cliff(a), Cliff(ay,,) and their
modules A(a), A(a)y, which describe the NS and R sectors of the fermions, respectively. In
Section 6.1.2, we will review the spin group action on the modules.

6.1.1 Clifford Module Construction

The tensor algebra of a K-vector space V' is
(V) :=EPHve, (6.1)
d=0

where V&9 = K.

Let V be a K-vector space with a quadratic form ¢ (see Remark A.3 for the definition of
a quadratic form). Its Clifford algebra Cliff(V,q) is the quotient of its tensor algebra by the
relation®' u ® u ~ —q(u) foru € V.

Cliff(V,q) .=T(V)/u @ u ~ —q(u). (6.2)

If the characteristic of the field K is not 2, then by using the the associated form (u, v) := £ (q(u+
v) — q(u) — ¢q(v)) in the sense of (A.46), we have ¢(u) = (u, u), and the relation u ® u = —q(u)
is equivalent to

URv+v@u=—2(u,v) (6.3)
foru,v e V.
If the quadratic form ¢ is 0, then the Clifford algebra is the exterior algebra \ V of V, and the
multiplication ® is often denoted by A. For example, u A v = —v A u for u,v € V.

31 Another convention u ® u ~ q(u) is also commonly used for the definition of Cliff(V/ g).

65



Construct the VOSA
Let a be an n-dimensional C-vector space with a non-degenerate symmetric bilinear form
(—, —). Define

i= P a(r) (6.4)

r€L+1
as the direct sum of copies of a labeled by r € Z + %, and the symmetric bilinear form on a as the
C-bilinear extension of

1
3) (6.5)

(u(r),v(s)) = (u,v)dr4s0 (u,v€a, r,se€Z+
Here, u(r) (u € a) denotes an element in a(r).
We define the Clifford algebra Cliff(a) of a as the one with respect to the quadratic form

q(it) = (@, @) (@i € &). That i,

Cliff(a) :=T(a)/u ® 4 ~ —(u, u). (6.6)
We will omit ® below. It is easy to see that the relation uu = —(u, @) is equivalent to
{u(r),v(s)} == ulr)v(s) + v(s)u(r) = =2(u(r), v(s)). 6.7)

We introduce a polarization® a = a~ @ a™ as

a= P ar), = P al). (6.8)
re(Z+1)<o r€(Z+1)>0
Cliff(a~) = A a~ and Cliff(a*) = A a' are also defined in the same way as Cliff (a), and they
are subalgebras of Cliff(a).
Take the Cliff(a™)-module C, whose basis is denoted by |0), on which u(r) € Cliff(a™) acts
as u(r)|0) = 0 (u € V,r > 0), and C C Cliff(a*) acts as the usual multiplication. We define the
Cliff (a)-module A(a) as the induced module from it:

A(a) = Cliﬁ(a) ®Cliff(a+) C|O> (6.9)

That is, a* annihilates |0), and A(a) is isomorphic to Cliff(a~)|0) as a Cliff(a~)-module.
We can equip A(a) with a VOSA structure of central charge . Let ¢y, . . ., 1, be an orthonor-
mal®*® basis of a with (¢;, ;) = +1. The Virasoro element is given as

= ——sz % __>|0> (610)

32 An isotropic vector of a vector space V with a quadratic form ¢ is a vector v € V' (sometimes required to be non-
zero) such that q(v) = 0. A polarization of V is a decomposition V = V' & V'~ into maximal isotropic subspaces
with respect to g. Note that the associated form of the quadratic form (A.45) is also called polarization, although we
do not use this terminology in these notes to avoid confusion.

3Since we are considering the symmetric bilinear form (—, —), not a Hermitian form, on the C-vector space, there
is no concept of the signature of the form, and we can always take an orthonormal basis with squared norm +1.
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The weight of the state uy(—71) - - - w,(—7,)[0) (u; € a,7; € (Z + £)50) is
wt(ug(—=ry) - (=r)]0)) =7y + -+ 1. (6.11)

The map —id; : a — a induces the map 6 : Cliff(a) — Cliff(a) called the parity involution.
We write its eigenspace decomposition as Cliff (a) = Cliff(a)? ¢ Cliff (a)! with eigenvalues 1 and
—1 respectively. We introduce the parity decomposition A(a) = A(a)? @ A(a)! by

A(a)® := Cliff(a)°|0) = (/\ a)|0), (6.12)
odd

A(a)' = Cliff(a)'0) = (/\ a")0). (6.13)

This introduces the Z,-grading of the VOSA on A(a). Any states in A(a)? have integer weights,
and states in A(a)! have half-integer weights. In particular, the subalgebra A(a)? of A(a) is a
VOA.

In physics notation, 1;(r) is often denoted by ¢, and the elements of a~ and @™ in the form
of u(r) are called the creation operators and the annihilation operators, respectively. A(a) is the
NS sector of the n real free chiral fermion theory.

Construct the R sector ) i

In general, for a vertex superalgebra V' = V? &) Vlj its canonically-twisted module M is a
Zo-twisted module M of V' with Zy-grading M° @ M' such that the twisted vertex operators
(4.18)

YM(v,2) = Z v%z_”_l (6.14)

ne%Z

satisfy, forany v € V7, v% maps M7 to MP*9, and v% = 0ifn ¢ Z+5. Any vertex superalgebra
has the parity involution 6 := ids & (—id1), and in light of this, a canonically-twisted module
is a f-twisted supermodule.

We can construct a canonically-twisted module A(a), of A(a) as follows. It is the R sector
of the n real free chiral fermion theory in the language of physics.

We assume n = dim a is even below. Define

du = EPa(r) (6.15)
rez
and the bilinear form on a, as
(u(r),v(s)) = (u,v)4s0 (u,v € a, r,s €Z). (6.16)

We choose a polarization of a as a = a~ @ a*. They are usually chosen so that

a” = Spanc{¥y,..., Uz}, aF =Spanc{¥;,..., Us}, (6.17)
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where

1 — 1
\Di = — i— + \Y4 —1 i) \IJZ = —= i—1 — V —1 i) 618
\/5(7% 1 ¢2 ) \/5(% 1 ¢2 ) ( )
for an orthonormal basis 11, . . ., 1,, of a. Then we introduce a polarization ay, = a,, @ d;", as
iy =a (0)® @ a(r), ai =a"(0)  a(r). (6.19)
T€Z<0 TEZ>O

Again, Cliff(aZ,) = A aZ, are subalgebras of Cliff(a).

Take the Cliff(a/, )-module C, whose basis is denoted by |0)r, on which u(r) € Cliff(ag,)
acts as u(r)|0)r = 0, and C C Cliff (a*) acts as the usual multiplication. We define the CLiff (ay, )-
module A(a)y, as

A(@)une = Clff (8) @y ) ClO)R. (6.20)

That is, a;;, annihilates |0)x.

We can equip A(a)y, with a canonically-twisted A(a)-module structure. The weight of the
state uy (—7r1) - - - w(—r)uy (0) - up(0)|0)r (w; € a, 1 € Zisg, u; € a7)is
n
I
The Zs-grading on A(a)y,, is introduced as follows: we assign 0 or 1 to the parity of |0)g, and
then (A" a,)|0)g has the same parity as |0)r, whereas (A" ag,)|0)x has the opposite parity.
The parity of |0)g is basically arbitrary. For example, [FFR91] always defines the parity of |0)g
as 0. In these notes, following [DMC14], we specify it as 7 mod 2, when n is a multiple of 4,
which will be justified in Section 6.1.2 as the eigenvalue (—1)7 of |0),, with respect to the action
by the lift ¢; - - - ¢, € Spin(a) of —id, € SO(a). We write the subspaces of A(a), with parity 0
and 1 as A(a)? and A(a)l,, respectively.

tw?

wt(uy(—=r1) - (=r)uy (0) - up(0)[0)r) =711 + -+ 1 + (6.21)

6.1.2 Spin Group Action

Spin group Spin(a)

The details of the definition and properties of the spin group are reviewed in Appendix D.
Here, we only present the main points.

Recall that a is an n-dimensional C-vector space with symmetric bilinear form (—, —). Simi-
larly to Cliff(a), we introduce the parity decomposition Cliff(a) = Cliff(a)® & Cliff(a)' induced
by —id,. The Clifford algebra Cliff (a) contains the spin group Spin(a) defined by

Spin(a) := {uy - - uy | u; € a, (u;,u;) =1} (6.22)

= {z € (Cliff(a)°)* | raz™* C a,272 = 1}. (6.23)

Here, (Cliff(a)?)* is the set of invertible elements of Cliff(a)°, and 27 is defined as 27 = u; - - - u;
ifx = ---u (u; € a). If v € C, then z7 = x. (This is the definition of the spin group in the

sense of (D.25, D.27).)
An important property of Spin(a) is the following fact.
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Proposition 6.1. Spin(a) is a double cover of SO(a) defined as
SO(a) := {0 € SL(a) | (Ou, Ov) = (u,v) for any u,v € a}. (6.24)
More precisely, Spin(a) is a central extension of SO(a) by Z
1 — {+1spin(@ } = Spin(a) & SO(a) — 1, (6.25)
where o : Spin(a) — SO(a) is the group homomorphism defined as
Qo x> rexr L. (6.26)

In particular, if we take an orthonormal basis /1, ..., 1V, of a, then the lifts +0 € Spin(a) of
O € SO(a) acton Y, c'y); € aas (D.34)

Cl Cl

(EO) | (Y- tn) | 1 || (EO) = (1) O | & ], (6.27)

C?’L

where O is represented as a matrix with respect to the basis {1; };.

The Spin(a)-action on A(a) and A(a),

The Clifford module VOSA A(a) and its twisted module A(a)t,, naturally admit a Spin(a)-
action as follows.

The action of = € Spin(a) on us(ry1) - - - w(r;)|0) € A(a) (r; € Z + 3) is defined as

ur(ry) - ur(re)|0) = (2w ) (r1) - - (zugx ) (r)]0). (6.28)

This action is well-defined because { (zw;z ") (r;), (zu;z ™) (r;)} = —2(zwe ™", vujz™")0pir, 0 =
{ui(ri), uj(r;)}. Since —lgpin@) € Spin(a) acts on A(a) trivially, this Spin(a)-action reduces to
Spin(a)/(—1spin(a)) = SO(a)-action.

To describe the action of Spin(a) on A(a),, we identify Cliff (a) with Cliff (a(0)) C Cliff (ay).
Then x € Spin(a) C Cliff(a) acts on |0)g. So the action of z € Spin(a) on uy(ry) - - - u(r;)|0)r €
A(a)w (r; € Z) is defined as

ur(ry) - ur(rp)|0)r = (zurz ) (ry) - - - (wupz ™) (1) z|0)g. (6.29)

The action of —1gpin@) € Spin(a) on A(a)ty is nontrivial, and A(a)y, is only a projective repre-
sentation of SO(a).

There are two lifts of —1go) € SO(a). If we take an orthonormal basis 1)1, . .., 4, of a, then
they can be explicitly written as +1; - - - 1, € Spin(a). Depending on the choice of the polariza-
tion a = a~ & a*, one acts as |0)r — v/—12|0)g, and the other acts as |0)g > —v/—12|0).
The former one is denoted by 3 and called the lift of —1so() associated with the polariza-
tion. When n = dima is a multiple of 4, the Z,-grading of the canonically-twisted module
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A(a)ww = A(a)2, @ A(a){, introduced at the end of the previous Section 6.1.1 coincides with the
eigenspace decomposition with respective to 3 with eigenvalue +1 and —1. The Z,-grading of the
VOSA A(a) = A(a)’® A(a)! also coincides with the eigenspace decomposition with respect to 3.
The eigenvalues of each sector with respect to 3, —3, and —1gpin() can be summarized as follows.

|Aa)° Aa)' | A(a)d, Aa)

tw

e¥genvalue W.I.t. 3 1 —1 1 -1 (6.30)
eigenvalue w.r.t. —3 1 -1 —1 1
eigenvalue w.r.t. —Igpin(a) 1 1 —1 -1
If we choose the polarization as in (6.17), then we can explicitly check
=41y = V=1 (U U 4 1) - (Ua s + 1), (6.31)

Finally, we remark that these Spin(a)-actions on A(a) and A(a)t, are weight-preserving and
parity-preserving.

6.2 Duncan’s Supermoonshine Module

In this Section 6.2, we review the construction of the Conway moonshine module V/%. It is
constructed from the VOSA of free fermions in a way similar to the Zs-orbifold in Section 6.2.1,
and we will see how the Conway group action is realized on it in Section 6.2.2.

6.2.1 Construction of Duncan’s Module

We set a = Agy ®7 C where Ay is the Leech lattice with symmetric bilinear form (—, —). In
particular, n = dim a = 24. The A(a)’-module structure on

V7= A(a)’ @ A(a)?, (6.32)
extends uniquely to an VOSA structure, and the A(a)°-module structure on
VI = A(a)! @ Ala),, (6.33)

extends uniquely to a canonically-twisted V' /%-module structure. There seems no consensus on the
name of this VOSA V /%, or the whole theory V /% & Vt{f. We call it the Conway (super)moonshine
module following [TW17], or Duncan’s (supermoonshine) module following [AKL.22], because it
was first constructed by Duncan in [Dun07], although it should be noted that it was also revisited
with Mack-Crane in [DMC14].
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The original theory A(a) and Duncan’s module V/% are in the relation similar to the Z,-
orbifold** of each other.

NS R NS R
Zo= () Al) Al OO 2y (Clge) | VR VE
even | A%a) A° - (6.34)
odd | AY(

(@)tw “(—1gpin(a))-orbifold’ even A%(a) Al(a)
a) Al(a)u odd A%a)y  ANa) 4

We may consider the similar construction with respect to —3 (6.30), and the resulting theory
is denoted by V*2.

NS R NS R
To= )| M) Al IO 2y (g | VE W
even A%a) Al(a)y, (—Lgpin () -orbifold even A%@)  Al(a) '
odd Al(a) A%a)y odd AYa)ew  A%(a)w
The A(a)’-module structure on
V= A(a)’ @ A(a)l, (6.36)

extends uniquely to an VOSA structure, and the A(a)’-module structure on
Vil = A(a)' @ A(a)}, (6.37)

extends uniquely to a canonically-twisted V' **-module structure. This V*% is isomorphic to V' /% as
a VOSA, and also called the Conway moonshine module.

Remark 6.2 (lattice description). Through the boson-fermion correspondence [Fre81], the VOA
A(a)? is isomorphic to the lattice VOA Vp,, of the D, lattice. Recall that

Dy = A{(k1,... . ky) € Z" | Y ki =0mod 2}. (6.38)

=1

It is known that the irreducible representations of a lattice VOA V7, for an even lattice L are in
one-to-one correspondence with the elements of the quotient L*/L of the dual lattice L*, called
the discriminant group® of the lattice L, and labeled as {Vyy 1, }rsrer+/z [Don93].

The D, lattice is v/2x the lattice constructed by Construction A from the even weight code
En = {w € Fy | wt(w) = 0mod 2} [CS99, Ch. 3 §2.3], or v/2x the lattice constructed by

3 In the viewpoint of footnote 58, we assume that the spin structures on the tori of both the original and orbifold
theories are the NS sectors (in the spatial direction), and take the Zy-orbifold by the Z, gauge field. In this sense,
A(a)ty is in fact the Zo-twisted sector of the NS sector A(a). The reason why we can also regard A(a)y as the R
sector is that the fermions are subject to the sum o + A of the spin structure o and the Z gauge field A.

31f a lattice L is integral, we have L C L*, and hence the discriminant group L*/L is well-defined. Letting GG
denote the Gram matrix L, we have |L*/L| = det G.
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Construction B from the trivial code 0,, of length n. Mimicking (2.34)—(2.37) for doubly-even
self dual code C, let us define for 0,, with n = 0 mod 4,

Ao(0,,) :=Z" = D,, (6.39)

A1(0,) :==2Z" = (1,0,...,0) + D, (6.40)
1. 1

Ay (0,) = 51 +Z;‘ e = §((—1)4“, 1,...,1)+ D,, (6.41)
1. 1 n

As(0,) == §1+ng*) (( D%,1,...,1) + D,. (6.42)

Now, we have Dyy = Ag(015), and Dfy = | |7, Ai(012). | D}y/D12| = 4 and the four elements

of D3,/ Dy are A;(012) (i = 0,1,2,3). As A(a)’-modules,
A(a)o = VA0(012)> A(Cl)l = VA2(012)7 A(a)‘?w = VA2(012)7 A(Cl)%w = VA3(012)' (6.43)
As a result, V1 =~ Dt as VOSAs, where DE = D U (%T + D;5) is the unique self-dual

positive-definite lattice of rank 12 without vectors of squared length 1. Since Df, =& Dy L
(%(—17 1,...,1) + Dis), we can see V4 = VD1+2 =~ V/4, (Remark ends.)

6.2.2 Conway Group Action

The SemiSpin(24)-action on V' /*

We focus on SO(24) = SO(A24®zR) C SO(a), and its double cover Spin(24) = Spin(Aqy®yz
R) C Spin(a).

In general, if n is a multiple of 4, then the center™® of Spin(n) is Za X Zs = (—1lgpinm)) X (3)-
The quotient Spin(n)/(—1spin(n)) is isomorphic to SO(n), whereas the quotient Spin(n)/(3) is
another group called the semi-spin group SemiSpin(n), not isomorphic to SO(n) except for n = 8.

Recall that Spin(24) acts on the whole A(a) © A(a),. Since the action of 3 on V7% is trivial,
the Spin(24)-action on V7% reduces to the action by the quotient Spin(24)/(—3) = SemiSpin(24).

Spin(24) ~ A(a

/ \181”‘(24)
m

SemiSpin(24) ~ V7 A(a) (6.45)
3The center of Spin(n) is [Bin13, Ch. 8]
Zg = <_1Spin(n)> (n is Odd),
Z(Spin(n)) =< Z4 = (3) (n =2 mod 4), (6.44)
Ly x Ly = (—1gpin(n)) X (3) (n=0mod 4).
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The Co;-action on V' /%
Take the Conway group Coy = Aut(Agy) C SO(24).

Proposition 6.3 ((DMC14, Prop. 3.1]). There is a lift G C Spin(24) of Co, C SO(24) such that
G is isomorphic to Coy, and such a lift is unique.

Proof. The existence of G =2 Coy is due to the fact that the Schur multiplier H,(Cog;Z) is
trivial [Gri74, §9], and Coy is a perfect group®” H;(Coy; Z) = 0.

We can see the uniqueness as follows. According to the Co; page of [WWT*], Coy is gen-
erated by two elements A, B such that®® (ABABABABBABABBABB)3* = 1and B® = 1.
Since these relations contain odd numbers of A and B respectively, these relations determine
which of the two lifts +A € Spin(24) of A is the generator A of G C Spin(24), and which of
+B is the generator as well. []

We take an orthonormal basis 11, . .., 194 of Agyy ®7z R, and introduce the polarization a =
a”@at asin (6.17). This determines which of the two lifts of —1go24) € SO(24) is 3 € Spin(24);
the other one is —3. Since —1go(24) € Cop, one of £3 is contained in G, and the other is not.
Recalling (6.31) 3 = 1) - - - 194, We can rename 17 and 1), so that 3 € G. In this way, we always
assume that we take the orthonormal basis of Ay ®7 R and the polarization such that 3 € G.

Since the action of 3 on V/! is trivial, the action of G C Spin(24) on V/% reduces to the action
by the quotient G/(3) = Co; C SemiSpin(24).

We will also write G as Cop when there is no risk of confusion.

Cog C Spin(24) ~ A(a) @& A(a)tw

/43) o

Co; C SemiSpin(24) ~ V7t Coo C SO(24) ~ A(a) (6.46)
Remark 6.4. On V*%, the action of —j is trivial, but the action of 3 is not. So we can say that
the action of Spin(24) reduces to the action of Spin(24)/(—3) = SemiSpin(24), but since —3; ¢
Cog C Spin(24), the action of Coy does not reduce to the action of Co;. In particular, V/ 7 and
V*% are isomorphic as VOSAs, but they are not as Cog-modules. (Remark ends.)

37 A group G is said to be perfect if its abelianization G®P := G/[G, G] is trivial. Since the only normal subgroups
of Cog are the trivial ones 1, Cog, and its center Zo satisfying Cog/Zs = Coy, it is obvious that Coyg is perfect.
Using G** = H,(G;7Z), we have H,(Cog;Z) = 0. By applying H;(Cog;Z) = 0 and the trivial Schur multiplier
H(Cog;Z) = 0 to the universal coefficient theorem, which states 0 — Extz(H,(G;Z); A) — H?*(G;A) —
Homgz(Ho(G;7Z); A) — 0 is exact, we have H?(Cog;Zs) = 0. This means any extension of Cog by Zs splits, and
hence there is a group-homomorphic lift of Coy C SO(24) to Spin(24).

3The convention of [WWT] is the right action, so if we use A, B introduced in (2.46, 2.47) which act on column
vectors in Z24 from the left, we have to reverse the order of the multiplications in these relations. Note that the
Version 3 webpage https://brauer.maths.qmul.ac.uk/Atlas/v3/spor/Col/ is not maintained, and there is a typo which
lacks the last B as “(ABABABABBABABBAB)3® = 1, when accessed November 9th, 2025. Instead, the
Version 2 webpage https://brauer.maths.qmul.ac.uk/Atlas/spor/Col/ is maintained when accessed, and presents the
correct relation.
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6.3 Conway Moonshine

Recall that V7% = A(a)? © A(a)? , and states in A(a)® have integer weights, whereas those in

tw?

A(a),, have half-integer weights. In particular, the weight-2 subspace of A(a)?, is

2! := Spanc{(even number of ¥;(0)’s)|0)r} C A(a)g,. (6.47)
This 2} and
2! .= Spanc{(odd number of ¥;(0)’s)[0)r} C A(a),, (6.48)

are called the chiral representations or the Weyl spinor representations of Spin(24).
We have seen that Co; C SemiSpin(24) acts on V/%. As a Co;-module, this Weight—g subspace
211 decomposes into irreducible modules as [DMC14, proof of Prop. 4.4]

2 =19276 ® 1771, (6.49)

where 1 is the trivial representation, whose states are invariant under the Co;-action. Moreover, a
suitably scaled basis 7 of this Co;-invariant subspace 1 constitutes the supercurrent of an N' = 1
superconformal algebra (4.22, 4.23) in Vi [DMCl14, Prop. 4.4].

Conversely, it is proved [Dun07, Thm. 4.11] that the group Auty—;(V/*) of all the automor-
phisms of the VOSA V' /% preserving this N = 1 structure is precisely isomorphic to the Conway
group Co;. To summarize,

Theorem 6.5 ([Dun07, Thm. 4.11]). The VOSA V7% admits an N' = 1 structure such that
Autp— (V7)) = Co,.

Furthermore, its uniqueness is also known as follows, although we do not go into the details.

Theorem 6.6 ((DMC14, Thm. 4.5]). Let V be a self-dual C5-cofinite rational VOSA of CFT type,
with central charge 12 and without weight—% states V% = 0. Then V is isomorphic to VI* as a
VOSA.

In particular, V' in this Theorem 6.6 admits an A" = 1 structure such that Auty—; (V) = Co;.
Of course, we can see the appearance of representation dimensions of Co; in the coefficients
of the partition function of V/* [Dun07, Eq. (1.0.2)]

8
Try g0 21 = Om(r)n(r)” ] (6.50)

- n(r/2)8n(27)"

= ¢ 2 (1 + 276q + 2"¢% + 11202¢* + 49152¢% + - - -), (6.51)

where 276 is the smallest nontrivial irreducible representation dimension of Coy, 21 = 1+ 276 +
1771 asin (6.49), 11202 = 142764299+ 1771+ 8855, and so on. Since the Co;-action preserves
the NV = 1 superconformal algebra, we will still see the representation dimensions of Co; even if
we decompose the partition function into N = 1 superconformal algebra characters.
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Now, we can see that the three important sporadic groups M, Co;, and M>, can be realized as
automorphism groups of the following objects.

Aut ‘ algebraic object VOA

M | the Griess algebra B" the (bosonic) VOA V* (6.52)
Co; | the (quotient of) Leech lattice Aoy /{£1} the N =1 VOSA V/* '
My, | the Golay code Gay ?

Remark 6.7. Among the algebraic objects listed above (6.52), we have already mentioned the
uniqueness of Gay, Aoy, and VI, The Golay code (G4 is the unique binary code of length 24,
dimension 12, and minimal nonzero weight 8 (Section 2.2.1). The Leech lattice Ay, is the unique
even self-dual lattice of rank 24 and without vectors of squared length 2 (Section 2.3.1). Duncan’s
module V7% is the unique VOSA of central charge 12 and without weight—% states (Theorem 6.6).

As mentioned in Section 2.4, the Griess algebra B is the weight-2 subspace (V%) of the mon-
ster VOA V9. The uniqueness of the monster VOA V¥ as a VOA of central charge 24 and without
weight-1 states is still an open problem, called the Frenkel-Lepowsky—Meurman uniqueness con-
jecture. See [DGLO7] for a partial result. One interest thing is that VOAs of central charge 24 with
weight-1 states V; # 0 are known to be uniquely determined from the structure of the weight-1
subspace V7, and already classified as 70 VOAs; see for example [VELMS21, Lam23]. Therefore,
if the uniqueness of the monster VOA is proved, then the proof of the list of 71 VOAs of central
charge 24 conjectured by Schellekens [Sch93] will be completed. (Remark ends.)
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7 Mathieu Moonshine

A K3 surface is a complex-two-dimensional Calabi—Yau manifold. More precisely,’” a complex-
two-dimensional compact Kéhler manifold X is said to be a K3 surface if its canonical bundle is
trivial, and it has the Hodge number h%!(X) = 0. It is known that any K3 surfaces are diffeo-
morphic, but their isomorphism classes as complex manifolds are not unique. The second integral
cohomology”’ H?(X;Z) of a K3 surface together with the symmetric bilinear form defined by the
cup product is a lattice of signature (3, 19) and isometric to*' IIf} & (—Es)®2. The isomorphism
classes of K3 surfaces are parametrized by the real-two-dimensional plane in H?(X; R), specified
by the nowhere-vanishing holomorphic 2-form w on X. The space of all the isomorphism classes
of K3 surfaces is called the moduli space of K3 surfaces. See for example [Kon18, Kon20, Asp96]
for more details.

We can consider the supersymmetric non-linear sigma model (full or non-chiral two-dimensional
SCFT) with its target space being a K3 surface X. We call it a K3 sigma model for short. It has
dimg X bosons and fermions, so the central charge is ¢ = ¢ = 4 x (1 + %) = 6. Thanks to the
hyperKiéhler structure of the K3 surface, it has N' = (4, 4) supersymmetries. Hence, the elliptic
genus ng 3) (1, z) (see Section 3.4) of a K3 sigma model is a weak Jacobi form of weight 0 and
index 1. From Theorem 3.4, such a weak Jacobi form is ¢ 1 (7, 2) up to scalar multiplication, and
it was calculated in [EOTY89] as

(7.1)

2 2 2
Zgl(g)(T, 2) =2p1(71,2) =8 (92(77 2) 03(7, 2) O4(T, 2) ) '

05(7,0)2  O5(7,0)2  64(7,0)2

This elliptic genus is independent of the choice of the target K3 surface, or equivalently, constant
over the moduli space.

Recall that the elliptic genus is a (—1)-inserted partition function of the left-moving R sectors
coupling to the right-moving Ramond vacua. Since the left-moving part of a K3 sigma model has
the N/ = 4 supersymmetry, we can decompose the elliptic genus Ze(lIf ) (7,2) into the (—1)%-
inserted characters of irreducible Ramond representations of the N' = 4 superconformal algebra
of central charge ¢ = 6. Such irreducible characters are labeled by the conformal weight ~ and
the spin [ (with respect to the 571(2)% algebra consisting of the three supercurrents) of the highest
weight state, and classified into

1

* the massless characters Ch/(\g):};}l(T, z)withh = {and =0, 3,

There are several different definitions of a Calabi—Yau manifold. If we define it as a compact Kihler manifold X
with trivial canonical bundle, then two-dimensional Calabi—Yau manifolds are only complex-2-tori and K3 surfaces.
Between them, K3 surfaces can be specified by the condition h%!(X) = 0 as in the main text, or by the condition
that the holonomy group is SU(2). (The holonomy of a torus is trivial.) So some literature uses the definition of a
Calabi—Yau manifold containing the condition that the holonomy is SU(n) where n is the complex dimension.

“OIn the notation of footnote 1, H2(X;Z) in the main text here should be written as H2 (X;Z).

top
411, 1 is the even self-dual lattice of signature (1,1). It can be written as I1; ; = (Z2, q) where the symmetric

bilinear form ¢ has the matrix form <(1) 0) . —FEjg denotes the Fig lattice whose symmetric bilinear form is multiplied
by —1, and hence of signature (0, 8).
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* the massive characters Chﬁ{l:4(7', z)withh =1 +Z-gand | = 3.

Their explicit formulae are derived in [ET88] (also reviewed in [EOT10]) as

_ 0r(7, 2)* V=12 o~ (DY
chV=4 (7,2) = (T, 2), (T, z2) = (7.2)
(0)411»0( ) 77(7_)3 ( ) ( ) (91 (7_, Z) — 1 — yql
_ 0,(7,2)% , s
N=4 _ U1, h—3
Chh,% (T, Z) = Wq 8. (73)
Ch(\é):f 1 (7, z) can be derived from
e T (r, 2) = 2 eyt (7, 2) + eyt (7, 2), (7.4)
where we allowed h = % for the massive character (7.3) as ch/i/’ 47, 2) = 9:7({7;3)2 5.
As aresult, the K3 elliptic genus Zgl( 3)(7, z) is decomposed as [O0g89, EOT10]
K3 - - -
Zay " (r,2) = 20 el (7, 2) = 2 it (1, 2) +2 ) Akl (7, 2) (1.5)
n=1
— N=4 _ N=4 N=4
=24 Ch(o)%’o(T, z)—2 Chi% (1,2) +2 Zl AnCthri’%(T, z), (7.6)
where
1 2 4
n | 3 5 6 7 8 9 an

An‘45 231 770 2277 5796 13915 30843 65550 132825

In 2010, Eguchi, Ooguri, and Tachikawa [EOT10] observed that these coefficients can be
written as simple sums of irreducible representation dimensions of the largest Mathieu group
Ms,. The 26 irreducible representation dimensions of My, are, from the smallest one,

1,23,45,45, 231,231,252, 253, 483, 770, 770,
990,990, 1035, 1035, 1035, 1265, 1771, 2024,
2277, 3312, 3520, 5313, 5796, 5544, 10395.

So Ay, ..., As are directly the irreducible representation dimensions of Ms4, and
Ag = 3520 4 10395, (7.8)
A7 = 1771 4+ 2024 + 5313 + 5544 + 5796 + 10395. (7.9)

This observation by [EOT10] triggered the effort to construct a coherent theory analogous
to the monstrous moonshine, so-called the (K3) Mathieu moonshine. Recall from Section 5.1
that the McKay—Thompson series .J,(7) is the character of g € M represented on the moonshine
module V*, and in the language of physics, it is a twisted partition function twisted in the temporal
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direction. The analogue of the McKay—Thompson series, that is, the character ¢, (7, z) of g € My,
instead of 1,4, in the elliptic genus ng 3)(7', z) was calculated in [Chel0, GHV10a, GHV10b,
EH10], and called the twining elliptic genus in [GHV10a, GHV10b]. In addition, the existence
of an Ms4-module which reproduces these twining elliptic genera as its characters was shown
in [Gan12]. The twisted partition functions twisted in both spatial and temporal directions, called
the twisted twining elliptic genera, were also calculated in [GPRV 12]. Remarkably, their modular
transformation properties fit into the theory of anomaly of orbifold (Section F.1.2), and controlled
by a 3-cocycle in H3(Myy; U(1)). This suggests that there exists an underlying VOA with Mo,
symmetry and the elliptic genus Z, e(llf 3 (1, 2).

In spite of these pieces of evidence, such an underlying VOA has not yet been found, and
many mysterious aspects still remain. First, the geometric symmetry of any K3 surface is smaller
than the subgroup Ms3 of Ms,. More precisely, the following theorem is known.

Theorem 7.1 (Mukai [Muk88]). For a finite group G, the followings are equivalent.

(1) There exists a K3 surface X such that its automorphism group Aut,(X) preserving the
nowhere-vanishing holomorphic 2-form w on X contains G as a subgroup.

(2) G is a subgroup of Mss, and as a subgroup of My, acting on 24 points (o4, the action of G
on oy has at least 5 orbits in $oy.

In the same spirit, the automorphism groups of K3 sigma models preserving the N' = (4,4)
superconformal algebra were studied in [GHV11], through a strategy similar to Kondd’s proof
[Kon98] of Mukai’s Theorem 7.1. They all turned out to be subgroups of the Conway group
Coy, but none of them are Ms,, or contain M, as a subgroup. Instead, some of them are proper
subgroups of My, and the others are not even subgroups of Moy.

One proposal to resolve this problem was provided in [TW11, TW13a, TW13b]. Since the
elliptic genus Z gf 3) (7, z) is constant over the moduli space of K3 surfaces, they glued the auto-
morphism groups of the K3 surfaces at three different points in the moduli space together, and
succeeded in constructing the action of a maximal subgroup 2* : Ay called the octad subgroup of
M, on the first massive part 45 @ 45 corresponding to the term 2A1ch/§v7 TA‘(T, z) in ng 3 (1,2)
(7.5). This idea is referred to as symmetry-surfing. Their action of 2* : A48 2in fact coincides with
the M,4-action restricted to 2% : Ag on the irreducible representation 45 of My,. Its application to
the higher-weight parts is discussed in [GKP16].

Another possible way to circumvent the situation is to loosen the condition on the automor-
phism group that it should preserve the N" = (4, 4) superconformal algebra. In fact, we only need
the AV = (4, 1) supersymmetry to consider the elliptic genus and its decomposition into the irre-
ducible characters of the left-moving N = 4 superconformal algebra, so the automorphism group
preserving only the N' = (4, 1) supersymmetry is still useful. For example, a K3 sigma model
with 28 : My, symmetry, which is one of the maximal symmetries given in [GHV11] (and not a
subgroup of Ms,), was constructed in [GTVW13]. This K3 sigma model was further studied in re-

lation to quantum error-correcting codes in [HM?20], and they also showed that the automorphism
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group preserving the N = (4, 1) superconformal algebra is indeed larger than 2% : My, although
it does not contain Msy. Of course, we may seek an N = (4,1) SCFT with My, symmetry and
elliptic genus Z Sl( 3)(7', z) (so the left-moving central charge should be 6), other than K3 sigma
models.

As another approach, the relation to Duncan’s module (Section 6) is also being explored. As
a naive observation, since a K3 sigma model has central charge (¢, ¢) = (6, 6), if we "reflect” the
right-moving part to the left-moving part, then we obtain a chiral SCFT with central charge c = 12,
which is the same central charge as Duncan’s module. In fact, under an appropriate procedure
called reflection, it was shown [DMC15, TW17] that the reflection of the specific K3 sigma model
constructed in [GTVW13] is isomorphic to Duncan’s module as a VOSA. As reviewed in Section
6.3, Duncan’s module admits an A/ = 1 superconformal algebra, and the automorphism group
preserving it is the Conway group Co;, which contains M4 as a subgroup. In addition, it is
known that Duncan’s module also admits A" = 2 and N = 4 superconformal algebras [CDD " 14]
(see also Section 3.4). However, the automorphism group of Duncan’s module preserving its
N = 2 and N' = 4 superconformal algebras are only Mos and Mo, respectively [CDD ™ 14].
It was also pointed out in [Ganl2] that if the character of My, appearing in the elliptic genus
Z gf 2 (7, z) is a restriction of a virtual character (a signed sum of irreducible characters) of some
representation of Co; or Coy, then such a representation of Co; or Coy must have an excessively
large dimension. (For example, the smallest virtual representation of Coy which restricts to the

representation 45 & 45 of M, has dimension over 100 billion.)

Lastly, we mention that, as a generalization of the Mathieu moonshine, the umbral moonshine
was proposed in [CDH12, CDH13]. It relates a certain quotient Aut(L)/Weyl(L) of the isometry
group to a mock modular form, for each Niemeier lattice L except for the Leech lattice Ay4, and
contains the K3 Mathieu moonshine as a case of L = (A;)?*. The result of [Gan12] for the K3
Mathieu moonshine was generalized to the other cases of the umbral moonshine by [DGO15].
For more on Mathieu moonshine and its recent developments, see for example [Tac12, DGO14,
Carl7,HHP22,JF20] and references therein.
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Part 111
Appendices

A Group Extension

In this Section A, we give an elementary introduction to group extensions and a few related topics.
In Section A.1, we review basic notions of group extensions following [Bro82, Ch. IV], and see
that the equivalence classes of group extensions of a group G by a G-module N are in one-to-one
correspondence with the cohomology classes of the second group cohomology H?(G, N). In the
next Section A.2, we focus on central extensions of abelian groups, and establish another one-to-
one correspondence with commutator maps in the case of free abelian groups, following [FLM88,
§5.2]. When a central extension of a free abelian group L is by Z,, we can further consider
additional information, quadratic forms, and corresponding extensions of /2L by Z,. This is of
particular importance in the construction of the Z,-twisted sector of a lattice VOA, so reviewed
in Section A.3. The last Section A.4 is a review of a certain theorem [FLMS88, Prop. 5.4.1] on
the automorphism group of a central extension, which plays a vital role in the description of the
automorphism group of a lattice VOA in Section 5.2.3.

A.1 Group Extensions and Group Cohomology

An extension of a group G by a group N is a short exact sequence of groups and homomorphisms
1 NSG5G—1. (A.1)

(Be aware that some literature calls it an extension of N by (G.) When there is no risk of confusion
in the homomorphisms constituting the short exact sequence, we only say that G is an extension
of G by N. (But note that the equivalence of group extension, defined later, classifies not only G,
but also the whole short exact sequence.) We also use the notation N.G for any extension of G by
N. Since i(N) is the kernel of 7, N can be regarded as a normal subgroup of G, and the quotient
group G/i(N) is isomorphic to G.

Let us take a set-theoretical section (not necessarily a group homomorphism) s : G — G.
Since s(g)s(g')s(gg’) ! € kerm = i(N) for g, g’ € G, we can define a functione : G x G — N
which measures how s failures to be a homomorphism by

s(9)s(g') = i(e(g,9))s(g9"). (A.2)

To look into the structure of G, we use the bijection N xG — G ; (n, g) ~— i(n)s(g). Recalling
that ¢(/V') is a normal subgroup of GG, we can define the action of h € G on N by

on(n) =i Y(hi(n)h™h), (A.3)
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and then the multiplication law of G can be calculated as
i(n)s(g) -i(n')s(g") = i(n - Gy (n') - €(g,9"))s(g9). (A4)
This multiplication law (i.e. the group structure of G) becomes simpler in the following cases:

* If we can take a section s which is a group homomorphism (i.e. the short exact sequence
(A.1) splits), then the cocycle becomes trivial €(g, ¢') = 1y. In addition, we can define a

G-action o on N by 0 := Qy,). As a result, G is 1somorphic to the semidirect product
N x, G, and it is also denoted by N : (. In particular, G can be regarded as a subgroup of
G by s.

— Moreover, if the G-action o on N is trivial, then (3 is isomorphic to the direct product
N x G.

 If NV is abelian, then for a given g € G, any element h € @ such that 7(h) = g defines the
same action ¢y, on [V, so the G-action ¢ reduces to a G-action ¢ on N.

— Moreover, if (and only if) i(N) is in the center of G, the G-action ¢ becomes trivial.
In this case, G is called a central extension.

We also use the notation N'G for an extension G such that the short exact sequence (A.1) does
not split.

In the following, we assume N is abelian. An abelian group on which a group G acts is called
a G-module. Since there is the G-action ¢ on N, N is a G-module.

From the associativity (s(g)s(g'))s(g”) = s(g)(s(g’)s(g")), the function € turns out to be an
N-valued 2-cocycle:

€(9.9)e(99',9") = ¢q4(e(d’, 9"))elg,9'9"). (A.5)

If we take another section ', then the cocycle ¢ for it differs from € by only coboundary. To see
it, we define ( : G — N as the difference of s(g) and s'(g):

s'(9) = i(C(9))s(g). (A.6)
Then we can calculate ¢’ based on the definition (A.2) as

€(9,9") = (g, 9)py(C(9"))¢(99) ¢ (g), (A7)

which shows that ¢’ and e differ by the coboundary d(. Conversely, if a cocycle ¢’ is cohomologous
to the cocycle € of the section s as € = ed(, then € is the cocycle of the section s’ such that

s'(g) = i(¢(g))s(g)-
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Two extensions 1 — N 5 G 5 G — land1 - N 5 G' ™ G — 1 are said to be
equivalent if there exists a homomorphism ¢ : G — G’ such that the diagram

(A.8)

é/

commutes. Such 1) is an isomorphism by the short five lemma.*’ The difference of the cocycle
¢ for a section s : G — G and the cocycle € for a section s’ : G — G’ is again a coboundary,
because ¢ is also the cocycle for the section ¢y os : G — G’. Note that two extensions can be
non-equivalent even if G and G’ are isomorphic as groups.” In this sense, the equivalence of
group extension classifies not only G, but also how N and G are incorporated in it.

So far, for a given G-module N, we have established a map

b . { extensions of G by N

ival H*(G,N). A
compatible with the action G ~ N } /equivalence — H(G, N) (A-9)

We can construct a map f in the inverse direction of (A.9) as follows. For a given G-module
N and a 2-cocycle € : G x G — N, we can construct a group extension GG, as a set N x G with
the multiplication**

(n,g) - (0. g') = (n-g(n')-e(g,9), 99), (A.10)
together with group homomorphisms

i:N—=Goine (n-e(le,16)74 1), (A.11)
W:@E—>G;(n,g)l—>g, (A.12)

constituting the short exact sequence.

“For the short five lemma to be applied, ¢» should be a homomorphism, not just a map. In fact, for any two
extensions G, G’ of G by N, there exists a map ¢ such that the diagram (A.8) commutes (e.g. just i(n)s(g) —
i'(n)s' (g) for sections s : G — G and s’ : G — G’ normalized as in (A.21)), but it is of course not an isomorphism
in general.

For example, for additive groups G = Zg X Zy and N = Zo, (i) G = 74 x Zs with i(1) = (2,0) and
7((a,b)) = (a,b) mod 2, and (ii) G = Z, x Zy with i(1) = (2,0) and 7((a,b)) = (b,a) mod 2 are inequivalent
extensions.

#Under this multiplication, the identity element of G, is (e(1g,1¢)~', 1¢), and the inverse of (n,g) is
(e(lg,1g) " tg*(n Ve(g~t,9)7 1, 9g71). We can check them by using e(1g,9) = €(lg,1g), €(g,1g) =
g(e(1g,1g)), and €(g, g Ve(1a, 9) = g(e(g™1, 9))e(g, 1), which all follow from the cocycle condition (A.5).
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For another 2-cocycle €, if it differs from e by the coboundary d( as in (A.7), then
b Ge— Gos(n,g) = (nC(9) ™, 9) (A.13)

defines an homomorphism to show the equivalence of G’E and G’Ef. Therefore, we have established
the map # in the inverse direction of (A.9).

In fact, b and f are the inverse of each other. To see it, we first note that any 2-cocycle € satisfies
€(1g,9) = €(1lg,1g) forany g € G, (A.14)

which follow from the cocycle condition (A.5). We also have
s(lg) =i(e(lg, 1)), (A.15)

from (A.2), for any section s : G — G of an extension and the cocycle € for it.
To see f ob is an identity map, for a given extension G, take a section s : G — G and construct
the extension GG, from the cocycle € for s. Then it is equivalent to the original extension G' by

V:Ge— Gi(n,g)—i(n)s(g). (A.16)
The most nontrivial part is ¢ o (i for @6) = (1 for é), which follows from
_ . _ A15) .

D((ne(le, 16)™4 16)) = i(ne(la, 1o) Hs(1e) 27 i(n). (A.17)

To see b off is an identity map, starting from a given cocycle ¢, construct the extension G, from
it. Then the section s : G — G, ;g — (1y, g) gives back the cocycle € because

s(9)s(g") = (e(g,9"),99") = (elg, 9")e(la, 99") ', 1e) - (1w, 99) (A.18)
Y=Y (e, 9)e(l6.16) T 16) - (L gg) = ilelg, ¢'))s(ag). (A.19)

To summarize the above discussions, we finally obtained the following theorem.

Theorem A.1. For a group G and a G-module N, there exists a one-to-one correspondence

{ extensions of G by N }

b
ivalence = H*(G, N). A.20
compatible with the action G ~ N equivalence (G, N) ( )

#

Lastly, we mention the normalization of sections and cocycles. If we take a section s : G — G
satisfying the normalization condition

s(lg) = 1g, (A.21)
then the cocycle ¢ for it satisfies the normalization condition
6(1@, 1g) = 1N' (A22)

Therefore, by Theorem A.1, any cohomology class in H?(G, N) has at least one normalized
cocycle. In fact, we can construct it explicitly; for any cocycle €, if we define ((g) := €(g,9) ™",
then the modified cocycle € := ¢’ - d( satisfies the normalization (A.22). Hence, in many cases,

we can restrict our attention to the normalized sections and cocycles, without loss of generality.
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A.2 Central Extensions of Free Abelian Group and Commutator Maps

Let GG be an abelian group and 1 — N % @ 5 G — 1 be a central extension of G, thatis, N is a
G-module by the trivial G-action. Now, any commutator [h, 1] := hh/h=*I'"* of h, i/ € G is in
ker 7 = i(N), and hence in the center of G.

If we take a section s : G — G, we can define a function ¢ : G x G — N by

c(g.9") =i '([s(9), 5(¢)])- (A.23)

If we take another section s’ : G — G, then we have [s'(g), s'(¢')] = [s(g), s(¢')], which follows
from the fact that s'(g)s(g)~" is in kerm = (V) and hence in the center of G. Therefore, the
function ¢ does not depend on the choice of the section. This c is called the commutator map
associated with the central extension.

The properties of the commutator, [k, h] = 1 and [h, h'] = [h/, h] !, respectively translates to
the alternating property

c(g,9) = 1, (A.24)

and the antisymmetric property

c(g,9)=cld,9)7", (A.25)

of the commutator map c.
From the fact that any commutator of G is in the center of (G, we also have the properties

(Wb, h") = [h, 1) (W 1), (A.26)
[, W'R") = [l ][R, B, (A.27)

for any h, i/, h" € G. They translates to the bilinearity

c(99',9") = clg,9")c(d', 9"), (A.28)
c(9,9'9") = c(g,9")c(g,9"), (A.29)

of the commutator map c. Under the bilinearity (A.28, A.29), the antisymmetric property (A.25)
follows from the alternating property (A.24).
In terms of the cocycle € of the section s, defined in (A.2), the commutator map is

c(g,9') = e(g,9)e(g', )" (A.30)
This (A.30) holds even if we replace € with another cocycle ¢ cohomologous to ¢, because such
¢’ is, as we have seen around (A.7), just a cocycle for another section. (Or, we can explicitly
calculate €'(g,¢')€'(¢', 9) ™! = €(g,9")e(g’, g)~'.) Therefore, (A.30) establishes a map

b : H*(G,N) — { (A31)

alternating bilinear maps
c:GxG— N

4The converse (“antisymmetric = alternating” under bilinearity) holds if N does not have order-2 elements.
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for abelian groups GG and N, where G acts on N trivially.

To obtain the inverse f. of this map b., we further assume that G be a free abelian group of

finite rank 7, and take a Z-basis eq,...,e, of G. For a given alternating Z-bilinear map c :
G x G — N, we define a Z-bilinear map €. : G x G — N by the bilinear extension of
cleie;) (1> ),
e.(ei,ei) = i . A.32
(€0 ¢5) { In (i <j). (A-32)

Since the action of G on N is trivial in the current situation, a Z-bilinear map G X G — N is
automatically a 2-cocycle. Now, this cocycle €. satisfies (A.30) for the given c. Therefore, ¢ — €,
establishes a map

4 : { alternating Z-bilinear maps

2
c:GxG—=N }%H(G’N) (A.33)

for a free abelian group G of finite rank and an abelian group N, and b, o {. is an identity map.
To see that . o b, is also an identity map, we start from a given cocycle ¢, consider the com-
mutator map c, for € as in (A.30), and show that the cocycle €.. constructed from this ¢, as in
(A.32) is in the same cohomology class as the original cocycle €. Let G, be the central extension
constructed from € as in (A.10). Recall that the cocycle for the section s : G — @6 ;9= (1n,9)
is € itself, and hence the commutator map associated with @e is of course c.. Take another sec-
tion s’ : G — G, as follows: set s'(e1), ..., s (e,) to any element satisfying 7(s'(e;)) = e;, say

s'(e;) = s(e;), and for a general element ¢ - - - ¢¥" € G, define

Sk ey =5 (e)" 5 (e) (A.34)

r

This s’ : G — G, is well-defined because G is a free abelian group, that is, torsion-free.*® Note
that this s’ is not necessarily linear, or a homomorphism, because s'(e;)’s are not necessarily
commutative. Then the cocycle € for this section s’ coincides with €., because

A R C AT (A.35)
= s (e)" - s(e) - (e) - s (e) (A.36)
=s(e))" 5 (e, ) S (e)! 8 ()T ] eelers ) (A.37)
r>j
L S/(el)k1+ll o S/<€T)kr+lri(H celes, 6j)kilj) (A.38)
i>j
=S ile (e e e e, (A.39)

4 If @ is a finitely generated abelian group, where torsion is allowed, then we cannot take a well-defined section
s’ in the form of (A.34) in general, and in particular, we cannot transform (A.38) into (A.39). In fact, there are
inequivalent extensions of G with the same commutator map in this case; see Remark A.6 for example. If we further
assume that N is a divisible group, then we can take a well-defined section s’ in the form of (A.34) even if G
has a torsion part, and therefore we can still establish the one-to-one correspondence with commutator maps. For
example, [TamO00, Prop. 2.6] deals with the case of N = k*, which is the multiplicative group of a field k.
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where in the second equation, we used the fact that the commutator map ¢, does not depend on the
choice of the section s or s’, as we saw above. Therefore, € and ¢._are the cocycles of the different
sections s and s’ of the same extension G, and hence they differ only by the coboundary, as we
have seen around (A.7).

We finally obtained the following theorem.

Theorem A.2. For a free abelian group G of finite rank and an abelian group N, there exist
one-to-one correspondences

b
{central extensions of G by N'} /equivalence = H*(G, N) (A.40)
i

o c:GxG—= N

be, { alternating 7Z-bilinear maps
fic

},(AM)

where in H*(G, N), N is regarded as a G-module by the trivial G-action.

A.3 Central Extension of Free Abelian Group by Z, and Quadratic Forms

A central extension of a free abelian group, say a lattice L, by Z, plays a major role in discussions
of a lattice VOA. In this Section A.3, following discussions around [FLM8S, Prop. 5.3.4], we will
see that we can induce central extensions of L /2L by Z, by specifying quadratic forms, which is
particularly important when we construct the Z,-twisted sector in Section 5.3.1.

Let L be a free abelian group of finite rank r, and we regard it as an additive group, that is, the
operation is denoted by + and the identity element is 0. Let L be the central extension of L by
Zo=(k|K*=1)

1= Zs 5 L5 L0, (A.42)

specified by a commutator map ¢ : L x L — Z,. Since c s bilinear, ¢ induces ¢ : L/2L x L/2L —
Zs. ¢ is also alternating and bilinear. L /2L is isomorphic to (F5)" as an Fa-linear vector space.

In general, for a given alternating bilinear form ¢ : (Fy)” x (Fy)" — Zy = (k | k* = 1), there
isamap G : (Fy)" — Z, such that

c(w,y) = Gz +y)q(x) " aly) ™, (A.43)
and the set of all such maps is in the form of {¢n | n : (F2)" — Z linear} [FLM88, Remark
5.3.2].*7 Conversely, a map ¢ : (F3)" — Zy such that the map ¢ : (Fy)" x (Fy)" — Z, defined
by (A.43) is bilinear is called a quadratic form, and ¢ is called the associated form of ¢. In such a
situation, ¢ is obviously alternating (or equivalently, symmetric in Z5) by the definition (A.43).

47 The proof of this statement is as follows. Take a Fo-basis e1, ..., e, of (F2)", and set §(e;) (i = 1,...,7) as
arbitrary values of Zy. Define € : (F3)" x (F2)" — Zs as the bilinear extension of (A.49) for ¢ and ¢ instead of ¢
and g. Then G(—) := &(—, —) satisfies (A.43). The degrees of freedom in choosing the values of g(e;) (i = 1,...,r)
correspond to the multiplication of linear maps 7 : (Fg)" — Zo.
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Remark A.3. More generally, a quadratic form on a K-vector space V' isamap ¢ : V' — K such
that

j(tv) = t*G(v) (teK,veV), (A.44)

and its associated form or polarization b:V x V — K defined by

b(v, w) == (v +w) — §(v) — G(w) (A.45)
is bilinear.
If the characteristic of the field K is not 2, then the quadratic forms and the symmetric bilinear
forms are in one-to-one correspondence under ¢ — b; the converse b — ¢ is G(v) = %b(v, v). In
this case, the associated form is sometimes defined as

¥ (v, w) = % (G0 +w) — d(v) — (). (A.46)

Note that if we represent a symmetric bilinear form % (v,w) as vT Bw by a symmetric matrix B,
then the corresponding quadratic form §(v) is v? Bu.

However, if the characteristic of K is 2, then this one-to-one correspondence does not hold. In
the special case K = [Fo, the condition (A.44) is always satisfied, and the definition of the quadratic
form reduces to the one we already defined before this Remark A.3. As mentioned above, there
are multiple quadratic forms with the same associated form, and they are parametrized by linear
maps 17 : V. — 5. One explanation of this special property of [, is that any linear map 7
satisfies (A.44). Another explanation is that, over [Fo, a linear map 7 : V' — [, can be represented
as n(v) = vldiag(n(e1),...,n(e,))v with an Fy-basis ey, ..., e, of V. Therefore, we can add
arbitrary linear maps 7 to a quadratic form to get another quadratic form with the same associated
form. The resulting quadratic form is G(v) = v’[é(e;, ¢;)]; ;v in the language of footnote 47.
(Remark ends.)

Getting back tothe ¢ : L/2L x L /2L — Z5 induced from the commutator map c of the central
extension L (A.42), let us take a quadratic map ¢ : L /2L — Z, with associated form ¢. Now, we
will show that a lift of 2L

K; = {i(G(k +2L)k* | k € L,k = n(k)} (A47)

is in fact a subgroup of L contained in the center of L.
Let g : L — Zs be the pullback (L — L/2L) o G of §. Obviously we have

c(k, k') = q(k + K)q(k) " q(K) " (A48)

By taking a Z-basis eq, . . ., e, of L, we can construct a cocycle € : L X L — Z, whose commutator
e(k, k" )e(k', k)~1 coincides with c(k, k'), by the bilinear extension of

cleie;) (1>),
(e, e) =< q(e) (i =17), (A.49)
1 (i < 7).

(Note that this construction of a cocycle can produce a different one from (A.32) in general.)
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Lemma A 4.
(1) q((t1 + ta)k) = q(t1k)q(t2k) for any t1,ty € Z and k € L.
(2) e(k, k) = q(k) forany k € L.

Proof. (1) Since c is alternating and bilinear, c(t1k, tok) = 1. Use it to (A.48).
(2) Let us write k = ), kie;. Using (1) and the bilinearity of c to the definition (A.49) of e,
we have

Hc ‘e;, kI e; Hq (K'e;). (A.50)

1>7

Then, using (A.48) and the bilinearity of c repeatedly,

e(k, k) = H c(klei, kej) - c(k’eq, k'er)q(kter)q(keq) - Hq(k:iei) (A.51)
i>3,i>j i>3
= H c(klei, kej) - q(kre; + K’eq) - H q(k'e;) (A.52)
i>3,i>j >3
= H c(k'ei, kle;) - c(k’es, k'er + koe®)q(k'er + ke2)q(kes) Hq (K'e;) (A.53)
i>4,i> ] i>4
= H c(klei, K e;) - q(k'er + kPey + K’e3) - H q(k'e;) (A.54)
i>4,i> ] i>4
(A.55)
=q(kle; +---+k"e,) (A.56)
= q(k). (A.57)
O

A

We take a section s : L — L of (A.42) such that its cocycle is €. Then, for any x"s(k) € L
(weomit ¢ : Zg — L),

q(m(k™s(k))) (k™ s(k))* = q(k)s(k)s(k) (A.58)
= q(k)e(k, k)s(2k) (A.59)
= s(2k), (A.60)

where we used Lemma A.4 (2) in the last equation. As a result, K; defined in (A.47) can be
written as

K; = {s(2k) | k € L}. (A.61)

In addition, since  is bilinear, €(2k, k') = e(k’, 2k) = 1. This shows that K is a subgroup of L,
and it is in the center of L.
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Now, we have a central extension
1= Zy 5 L)K; — L/2L — 0, (A.62)
such that for any x"s(k) € L,
(k™s(k)K;)?* = e(k, k)s(2k)K; = q(k)K; = o(q(k + 2L)), (A.63)

where we used Lemma A .4 (2) in the second equation.

The following Theorem A.5 is known. From this viewpoint of Theorem A.5 (2), the equation
(A.63) shows that the central extension (A.62) of L /2L by Zs is the one specified by the quadratic
form q.

Theorem A.5 ([FLM8S, Prop. 5.3.3]).
(1) For a central extension
1= 7y 5 ES (Fy)" — 0, (A.64)
whose commutator map is ¢ : (Fo)" x (Fy)" — Zo, if we define a map G : (F2)" — Zs by
o> =i(G(n(a))) for ack, (A.65)
then q is a quadratic form with its associated form c.

(2) The association of a quadratic form to a central extension in (1) establishes a one-to-one
correspondence

quadratic forms

/ j Fs)" by Z ival
{central extensions of (Fy)" by 7y} /equivalence <> { §: (F>) — Zs

} . (A.66)

Remark A.6. As we have mentioned below (A.43), there are multiple quadratic forms with the
same associated form. Therefore, Theorem A.5 is an example where the one-to-one correspon-
dence between equivalence classes of central extensions and commutator maps like Theorem A.2
does not hold. (See also footnote 46.) (Remark ends.)

To summarize the above discussions, we obtained the following theorem.

Theorem A.7 ([FLMS88, Prop. 5.3.4]). Let L be the central extension of a free abelian group L by
ZQ = </ﬁ) ‘ /432 = 1>

15 Zs 5 L5 L—0, (A.67)

specified by a commutator map ¢ : L X L — Zs. c induces the alternating bilinear map ¢ :
L/2L x L/2L — Zs. For any quadratic form § : L/2L — Zs with associated form ¢,

Ky = {i(G(k 4+ 20)k* | k € L k = n(k)} (A.63)
is a central subgroup of L, and
1—Zy— L/K — L/2L —0 (A.69)

is a central extension with quadratic form q.
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A.4 A Theorem on Automorphism Group of Central Extension

This Section A.4 is a review of [FLM8S, Prop. 5.4.1].

Let1 — N 5 G 5 G — 1 be a central extension of a free abelian group G of finite rank by
an abelian group NV, and ¢ : G X G — N be the associated commutator map.
We first define some necessary objects. We define a subgroup Aut(G, N) of the automorphism

~

group Aut(G) as
Aut(G, N) == {x € Aut(G) | x(i(n)) = i(n) forany n € N'}. (A.70)

Since N is abelian, Hom(G, N) has a group structure under the multiplication of functions: for
n,n € Hom(G,N), (n-1)(g) = n(g)n'(g). Now we can define a group homomorphism / :

Hom(G, N) — Aut(G, N) which maps n € Hom(G, N) to

In): G =G (A.71)
h— i(n(r(h)))h. (A.72)

In fact, I(n) is an element of Aut(G, N), and I satisfies I(1 - /) = I(n) o I(1)).
We also define a subgroup Aut(G, ¢) of Aut(G) as

Aut(G, ) :={¢ € Aut(G) | c(9(g),¢(g")) = c(g,4') forany g, ¢ € G}, (A.73)
and a group homomorphism II : Aut(G, N) — Aut(G, ¢) which maps x € Aut(G, N) to

I(x):G—G (A.74)
g+ m(x(9)), (A.75)

where § is an element of G such that (§) = g. Here, II(x)(g) does not depend on the choice of
g, because such another ¢’ is an element of §i(/V), and hence

m(x(9) € 7(x(9i(N))) = m(x(9)i(N)) = {m(x(9))}- (A.76)

To see that I1(y) is in fact an element of Aut(G, ¢), it suffices to calculate

— =

c(TI(x)(9). II0)(g") =i~ ([r(x(9)), 7 (x(g))]) (AT7)
=i (@) x(@) = i (9, ) = (9, 9) = (9. 9): (A.78)
where we used the definition (A.23) of the commutator map c in the form of ¢(—, —) = i~} ([~, =]);

recall that it does not depend on the choice of —. Lastly, it is easy to see that II is in fact a group
homomorphism: TI(y o x') = II() o II(x').

Now, here is the theorem.
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Theorem A.8 ([FLMS8S, Prop. 5.4.1]). The following sequence is exact.
1 — Hom(G, N) & Aut(G, N) 5 Aut(G,c) — 1. (A.79)

Proof. ker I = 1y (constant function in Hom(G, N)) and im I C ker IT are easy.

kerIT C im I can be checked as follows. Let y € Aut(G, N) satisfy II(y) = idg. Since
7(x(g)) = g for any g € G, we have 7(x(h)) = w(h) for any h € G, and hence the difference
x(h)h=' of x(h) and h is in i(N). Furthermore, it only depends on 7(h), because if we take

N

another A’ € G such that 7(h') = w(h), then i’ € hi(N) and hence x(h')(h')~' = x(h)h~L.
Therefore, there exists a map 7 : G — N such that x(h)h~! = i(n(w(h))). The linearity of 7
follows from, for any h, A’ € G,

X(RR)(RR) ™ = x(R)x (W) (W) T A= = x ()R x (W) ()7, (A.80)
where the last equation follows from y(A')(h')~! € i(N) C Center(G). As a result, €
Hom(G, N) and I(n) = x.

The surjectivity of II can be shown as follows. For ¢ € Aut(G,c), consider a new central
extension

1 5 NSGT G 1. (A.81)

If s : G — G is a section of the original central extension, i.e. 7o s = idg, then so ¢! is a section
of (A.81). Then, the commutator map cy4 associated with the new central extension coincides with
the original commutator map c, because

cs(9,9) = c(d7(9), 07 (9)) = clg, ). (A.82)

Therefore, by Theorem A.2, there exists 1 € Aut(é) such that the diagram

G (A.83)

(4)(g9) = m(¥(s(9))) = o(n(s(9))) = ¢(9)- (A.84)
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B Notations of Theta Functions

In this Section B, we review the notations of several theta functions and the Dedekind eta func-
tion, and their modular transformations. We mainly follow [Pol07, Egs. (7.2.31)—(7.2.44)], but
ZPolchinski = €27V~ IPolehinski i ¢y = €27V ~1% here, and the order of the arguments is (v, 7) in [Pol07]
but (7, z) here, following [ES15, Appendix]. As always, ¢ = e>™V =17,

The (basic) Jacobi theta function
We first define the (basic) Jacobi theta function as

I(rz) = > ¢ Pyt =T = g™ A+yg™ A +y ). (B.1)
n=—00 m=1

The second equation is called the Jacobi triple product identity.
Its modular transformations are

I+ 1,2) =9(r, 2+ %), (B.2)
T A R ) ®3)

The modular T transformation (B.2) is obvious. The modular S transformation (B.3) can be shown
as follows, which is the so-called Poisson summation formula. Using the Fourier expansion of the
periodic delta function

d dx—mn)= D eV (B.4)
n=-—o0o k=—00
we can calculate that
1 [
"2 = 3 / dy ¢V by (B.5)
T T oo ) —0
= Y e / " dp o B )2 (B.6)
k=—o00 -
— Z €2ﬂ\/?1(7§+2k+§) . (_\/__17_)1/2 (B7)
k=—o00
= (—V/=17) 2™V (7 ). (B.8)

In the third equation, we used the Gauss integral

/ da e = \/g (Re(a) >0, b e C). (B.9)
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The theta function with characteristics
The theta function with characteristics is defined as

a2
0 [ Z } (1,2) == 2™V 15y (7, 2 + aT + b) (B.10)
_ Z €2ﬂ\/jl(n+a)bq%(n+a)2yn+a (B.11)
_ e?ﬂﬁabq%ya H(l B qm)(l + e?ﬂﬁbqu—1/2+a)(1 + e—Qﬂ\/—ilby—lqm—l/Q—a)'
m=1
(B.12)
Its modular transformations follow from (B.2, B.3) as
0% | (r+1,2) =e ™ la*tag ¢ (7, 2) (B.13)
b ’ a+b+3 |77V
a 1z 1/2 w/—12% /7 _2m\/—1lab b
0 ; (_;, ;) = (—v/—17)"% e 01 = | (72) (B.14)
The following equations, which follow from (B.10) and (B.11), are also useful.
g| @+! (r,2) = ™V amg | “ | (2 2) (Im € Z) (B.15)
I b+ m Y b Y Y ) *
B / a’)2 ,
g *+ a/ (1,2) = 2mV1a(b+b T ye | ¢ (r,z+d'T+1"), (B.16)
b+ b b
o| ¢ } (1,2) =140 [ “ ] (1, —2). (B.17)
| b b
The elliptic theta functions
The elliptic theta functions, also often called the Jacobi theta functions, are defined as
u(r) =6 | o | (r2) =0tr2) = 3y (B.18)
[0 - 2
N _ _1\n,n%/2,n
0u(. 2) -—9_1/2}(7,@— 2 (B.19)
[1/2 = \
Oo(T,2) =6 _ é ] (1,2) = Z_ q%(n+%)2yn+§7 (B.20)
0u(r,2) = —0 | V2| (7,2) = v i (—1)rg2yns, (B.21)
7 1/2 ’ n=—oo
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We also write 6(7) for 6(7, 0). Their product representations are, from (B.12),

O3(m,2) = [J(1 = g™ @ +yg™ )L +y "),

m=1
Ou(r,2) = [J(1 = g™ (A —yg™ )1 =y~ 'q" '),
m=1
Or(7,2) = ¢y 2 T (1= ™) (L +yg™) (L +y g™ )
m=1

q"/%(2cos 2) H L—¢™(1+yg™) A +y g™,
me—1

o0

01(7,2) = —v/=1¢"*y'* T[T (1 = ™) (1 = yg™)(1 =y~ ¢

m=1
)

=¢"#2sinmz) [[(1 = g™ @ —yg™) (1 -y 'q™).

[y

m=

Their modular transformations follow from (B.13, B.14) as

and
93(—%, 2) = (== 2T gy, 2),
(. 2) = (VI 2T gy ),
o~ ) = (~V/ T PV T (),
(=L 2) = VTV e 1,2,

Jacobi’s identity is
93(7—7 Z)4 - 64(7—7 Z)4 - 92(7-7 2)4 + 01(7-7 2)4 =0.
Note that

01(7,0) = 0.
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The Dedekind eta function
The Dedekind eta function is defined as

n(r) =g/ JJ1—q") = > (~1)g2 s (B.38)
m=1 n=—oo

The second equation can be obtained by replacing ¢ and y in 03(, z) with ¢* and —q*%, respec-
tively. The modular transformations are

n(7+1) =™ (r), (B.39)
1(=2) = (—VTr) (). (B.40)

The modular T transformation (B.39) is obvious. To see the modular S transformation (B.40),
we first observe that, from (B.27),

27n(7)? = 0.01(7, 2)| .o (B.41)
Then we have
1 1
27m(—;)3 = 8201(—;, 2)| =0 (B.42)
1

= 7'8291(—;, z)'zzo (B43)

= T(—\/—_1>(—\/—_1T)1/28291(T, 2)| =0 (B.44)

= (—\/—_17')3/227T77(7')3. (B.45)
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C Cocycle Factor

To realize the appropriate commutation relations of the vertex operators V(z) o : eV X(2) .
(k € L) of alattice VOA V7, in accordance with whether V}(z) is bosonic or fermionic, we have
to introduce a correction factor ¢ (p) to modify the commutation relations of : eV~ 1% X() s Ag
a result, an additional factor £(k, k") called a cocycle factor appears in the OPEs of the vertex
operators. In this Appendix C, we will review this story in the language of physics. A good refer-
ence for cocycle factors is [GSW 12, §§6.4.4-6.4.5], but it deals with only even lattices. The cases
including odd lattices are discussed in for example [GO85, Appendix], [GTVW13, Appendix Al.

As already mentioned, let L be an integral Euclidean lattice of rank n in these notes. We would
like to construct the vertex operators V;(z) satisfying the commutation relation

Vi(21) - Vi (z2) = (=) FFVL (25) - Vi(21), (C.1)

for any k, k' € L. The conformal weight of V(=) is 1|k|?, so it is bosonic when k is even and
fermionic when % is odd, which accounts for the factor (—1)**I*'I* of (C.1).
Recalling that the OPE of operators : eV~ 1FX(2) g

. e\/jlk-X(Zl) - e\/ik’)((Zg) kK . emk-X(Zl)emk/-X(zz) : (CZ)

c= (21 — 29)
we can observe

ceVTlkX () L. oI X (22) L = (71)’@"@' ceVIK X (z2) L. VTR X (1) L (Zl — ,22)]“‘]“’ s VLK) X (z2) s (C3)

where O((z; — 22)"¥*1) terms are dropped. This (C.3) differs from the desired commutation
relation (C.1) only by the sign. To modify it, let us introduce the correction factors cx(p) as

Vi(2) = /"X s o (p), (C4)
where c;(p) is an operator in the form of a function of the momentum operators p' = af (i =
1,...,n). Then (C.1) translates to the condition on this correction factor c(p) as

ex(p + K)ew(p) = (=D ey (p + Be(p). (C5)

where we used cy(p) - : eV X)L = oVEIWXG) e (p 4+ k), because [pf,: eV TIF X)) =
(k/)z’ . eﬁk’-X(z) .

In addition, if we assume that the OPE of V(1) - Viv(22) contains (21 — 2)*¥ Vi yr(22) as
expected from (C.3), then we need ¢ (p + k')c (p) = crtr (p). However, this immediately turns
out to be impossible in general, because (C.5) states that cx(p + k')cw (p) and cx (p + k)cx(p),
both of which are supposed to become ¢4/ (p), can differ by sign. So, we introduce a factor
e: L x L — {£1} sothat

ex(p+ K)o (p) = (1) WP e (o 1 K)oy (p) = ek, K)eraw (). (C6)
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This allows the vertex operators Vj(2) to satisfy the OPE
Vi(z1)  Vir(z) = (=) Vi () - Vi) ~ e, K) (21 = 22) Vi (), (C©)
where O((z1 — )" +1) terms are dropped. It easily follows from (C.6) that ¢ must satisfy
ek, k') = (=1)FFHIPIFE (1 ). (C.8)
Furthermore, we impose the associativity on c(p) as
(cr(p+ K + K" )ew (p+ K"))ern (p) = cr(p + K + &) (e (p + K" ) e (D)) (C.9)
Then the factor ¢ should satisfy the condition
e(k,KNe(k+ K k") =e(k, k' + K")e(K' E"). (C.10)

This means that the factor ¢ : L x L — {£1} is a 2-cocycle in the language of group cohomology
(where {1} is regarded as an L-module by the trivial L-action), and hence ¢ is called a cocycle
factor. A 2-cocycle satisfying (C.8) is unique up to coboundary; see Theorem A.2. In the language
of Section A2, ¢ is a 2-cocycle for the commutator map c(k, k') = (—1)F% +FIF,

To construct ¢ (p) satisfying (C.6) and (C.9), we choose a Z-basis {¢e;};—1,. , of L and intro-

duce a bilinear non-commutative product * : L X L — Z on L by

.....

o "1
k * k/ = Zklk”(ei © €5 -+ |€i‘2’6]"2) + Zklk,lé(‘eiP + |€i|4), (Cll)

i>j i=1

where |e;|* := (leg]?)?, for k = 37, k'e; and k' = 3~ k”e;. This product * depends on the choice
of the basis {¢;};. In the language of Section A.3, this definition (C.11) follows the construction
(A.49) of a cocycle from the commutator map c(k, k') = (—1)¥*¥+k*IF'* and the quadratic form
q(k) = (=1)2(**+*" This construction also appears in [Kac98, Remark 5.5a].

We can now construct ¢, (p) satisfying (C.6) and (C.9) as

cr(p) = (=)™, (C.12)
and then € is given by
e(k, k') = (—=1)F, (C.13)
which of course satisfies (C.8) and (C.10).

Proof that ci(p) in (C.12) satisfies (C.6) and (C.9). For the first equation of (C.6), it suffices to
check

(_1)k*k’ _ (_1)k-k’+|k|2|k’\2(_1>k/*k. (C.14)
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This is already discussed around (A.49), but we can check it explicitly as follows:
(= )Rb R sk (1) (WR T eives R T ) )+ (b kT esvet e |1 ) (C.15)
= (= 1), (C.16)

where the first equation follows from k% = (k*)? mod 2, and the second equation follows from
> lkte]? = k[ mod 2.
The second equation of (C.6), and (C.9), are obvious. ]

Remark C.1. The 2-cocycle satisfying (C.8) is unique only up to coboundary. In particular, the
bilinear non-commutative product we can use to construct c(p) is not unique. For example, even
if we define

ks ko= KK (e ej + |eil’|e; ), (C.17)
i>j
and construct c(p) as (—1)¥*P, it satisfies (C.6) and (C.9). In the language of Section A.2,
this definition (C.17) follows the construction (A.32) of a cocycle from the commutator map
c(k, k') = (—=1)*¥+* PP without considering to specify a quadratic form.
If the lattice L is even, or if the lattice L is odd and we choose the basis so that e; is odd and

es, ..., ey, are even,*® then this product reduces modulo 2 to
kx kK = Z k'ke;-e; mod 2. (C.18)
i>j

This is the form adopted in [GSW12, §6.4.5].

This product *. (C.17) often suffices, but does not work well when we consider the reflection
Zy symmetry discussed in Section 5.3. Suppose we used this product *. to construct the cocycle
factor e, which will play the role of the 2-cocycle of the section k 5 e” of the extension L (5.36).
Then e(k, k) = (—1)2*” in (5.74) no longer holds, because the information of the quadratic form
q(k) = (—1)2¥" (which coincides with q(k) = (—1)2(¥*+F") for an even lattice) is not taken
into account (See Lemma A.4 (2)). As a result, the equation (5.74) would be modified by sign,
so if we follow the definition of 6, in [FLM88, Eq. (6.4.13)] as y(e*) = (—1)2*" (%)=L, then
0o(e*) would be e~ only up to sign, and the reflection Z, symmetry |k) — |—k) would need to
be modified by some extra signs |k) — £|—k). To avoid this complication, we have adopted the
product x (C.11) in these notes. (Remark ends.)

Remark C.2. The product * (C.11) is a little bit cuambersome. If we can take a Z-basis eq, ..., e,
of L such that

o if Liseven,® |¢;|> € 4Zforanyi=1,...,n,

“8This is always possible because (odd vector) — (odd vector) = (even vector).

“'The existence of a Z-basis ey, .. ., e, of a lattice L satisfying |e;|?> € 47Z for any i = 1,...,n does not imply
that \k;|2 € 47 for any k € L. In fact, we can take such a basis of the Leech lattice, as we can see from the symmetric
bilinear form (2.49), but the Leech lattice has vectors whose squared lengths are not multiples of 4.
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o if Lisodd, e; € 4Z + 3 and |¢;|* € 4Z forany i = 2,...,n,
then (C.11) modulo 2 coincides with the product (C.18)

kxk'=) Kke-e¢; mod 2. (C.19)

1>7

In the analysis in Sections 4.2 and 4.3 of [Oka24], the author used the bases satisfying these
conditions, and this product (C.19) was used in the Python code there. (Remark ends.)
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D Lift of SO(n) To Spin(n) and Its Action on Spinors

This Section D is a review of the spin group Spin(n) and the lift of elements of SO(n) to Spin(n).
The spin group Spin(n) plays an important role in understanding the structures of the theory A(a)
of free fermions and Duncan’s module V' /%, which are constructed as the Clifford algebra modules
in Section 6. We will review its definition and fundamental property as a double cover of SO(n) in
Section D.1, and describe the explicit form of a lift of an element of SO(n) to Spin(n) in Section
D.2.

D.1 Definitions of Pin Group and Spin Group

In this Section D.1, we review the definitions of pin group and spin group, and their fundamental
properties as (double) covers of O(V') and SO(V'), respectively. We will follow [LM89, Ch. I §2],
so the details of the facts cited here can be found there.

To keep generality, let V' be a vector space over a field K with a symmetric bilinear form
(—, —). In addition, we assume that the definition of the Clifford algebra of V" is

Cift(V)=T(V)/u®@u ~ e{u,u)y (ueV), (D.1)

where ¢ is either +1 or —1 (cf. footnote 31). We will omit ®. The relation u? = e(u,u) is
equivalent to

uv 4+ vu = 2e{u,v)  (u,v € V). (D.2)

The map —idy : V' — V induces the parity involution 6 : Cliff(V') — Cliff(V'), which defines
the parity decomposition Cliff (V) = Cliff (V) @ Cliff(V')!.

We can observe that, within the vector space V', the reflection with respect to the hyperplane
perpendicular to a vector v can be realized by the minus conjugate action by v. That is,

Lemma D.1. Any v € V such that (v,v) # 0 satisfies, for any c € V,

LT (D.3)

(v, 0)

Pl”OOf. —vev™! = _Uc((vev)v) = _U(vev) (—UC + 26<07 U>) =Cc— 228,1]?@' L]

v,V

—VCcv

It is easy to see that this map V — V¢ — ¢ — 24%y for (v, v) # 0 is an element of

(v,v)

O(V) :={0 € GL(V) | (Ou, Ov) = (u,v) for any u,v € V'}. (D.4)

Based on the above observation, we define

P(V) := (the group generated by {v € V' | (v,v) # 0}) C Cliff(V)*, (D.5)
P(V) = {z € Clift(V)* | 8(z)Vat =V}, (D.6)
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where Cliff(V')* denotes the group of all the invertible elements of Cliff(1"). We have P(V') C
P(V) by Lemma D.1. We also have’ K* C P(V), where K* = K \ {0}, because if we take

v € V such that (v,v) # 0, then any k£ € K* can be represented as k = ﬁv - v, where both
<5’j} sv and v are in P(V). If V is finite-dimensional and (—, —) is non-degenerate, we can show
that the map
©:P(V)=OV);z— 0(z)ez! (D.7)
is a group homomorphism satisfying
e ker p = K*,
* olpy : P(V) = O(V) is surjective.
Taking all of the above into account, we have an exact sequence
1+ K*—=P(V)=PV)50V) -1 (D.8)
Pin group Pin(V)
We define the pin group Pin(V') as
Pin(V) :=={vy - vy | v; € V, (v, v;) = £1} C P(V). (D.9)
Let us assume that V' is finite-dimensional and (—, —) is non-degenerate again. If we can normal-

ize any v € V with (v,v) # 0 so that (tv, tv) = £1 (t € K*), then ¢|pinvy : Pin(V) = O(V) is
still surjective because p(v) = p(tv). We say that the field K is spin if K* = (K*)? U —(K*)?
(hence at least one of t2 = (v, v) ! ort> = —(v,v) ! has a solution ¢ € K*) and the characteristic
of K is not 2. For example, R and C are spin. If K is spin, then we have an exact sequence

1= F—Pin(V) 5 0WV) =1, (D.10)

where

Z,= {+1,+V/-1} (V=1€K). @©.11)

In addition, under the same assumptions (finite-dimensional 1/, non-degenerate (—, —), spin
K), we have’!

Pin(V) = {z € Cliff(V)* | (z)Va~' = V,0(z)Tx = 1} ¢ P(V), (D.12)

30 [LM89, p. 19] claims that, if we define K := K* N P(V), then K* = KJ or K* = KJ U (—K;) holds when
K is spin. However, it seems that K* = K[ always follows, regardless of whether K is spin or not, as in the main
text.

3IThe details are as follows. It is obvious that Pin(V) defined in (D.9) is in the set on the right-hand side of (D.12).
Conversely, since P(V') = P(V), any element z in the set on the right-hand side of (D.12) can be written in the form
of uy -+~ w (u; € V) with g(u;) # 0. Since 0(2)Tx = (=1)'wy - -ug - ug -y = (—€)' ], (wi, u;), the condition
0(z)Tx = +1 translates to [ ], (u;,u;) = £1. Since K is spin, we can take ¢; € K* such that t7(u;, u;) = +1. As a
result, [ ], ti_2 =+l,and [, ti_1 € F,where F' C Pin(V) is defined in (D.11). Therefore, z = [, ti_1 “tyug - -t
is in Pin(V') defined in (D.9).
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where 7 is defined as 27 = u,, - --uy if £ = uy - - Uy, (u; € V), and 27 = z if z € R. We can

show 0(x)Tz € K* for any = € P(V), and it is called the spinor norm of x.
Here are some important remarks on the definition of Pin(V/).

 Suppose K = R. If (—, —) is positive- or negative-definite, then we may retain only one
corresponding sign of the condition (v;, v;) = £1 of the definition (D.9).

* Suppose K = R. If (—, —) is positive-definite and € = 1, or (—, —) is negative-definite and
e = —1, then by taking an orthogonal basis 1, . .., 1, of V with (¢;,1;) = £1, we have
(¢;)? = +1 for all i. In this case, Pin(V) is also written as Pin™(n). (D.12) holds even if
we replace 0(z)Tx = £1 with 27z = +1.

 Suppose K = R. If (—, —) is positive-definite and ¢ = —1 (e.g. the construction of Dun-
can’s module in these notes), or (—, —) is negative-definite and ¢ = 1, then by taking an
orthogonal basis as above, we have (1/;)> = —1 for all i. In this case, Pin(V) is also written
as Pin~(n). (D.12) holds even if we replace 0(z)"x = +1 with 0(z)Tz = +1.

* Suppose K = C. Since we are considering the symmetric bilinear form, not a Hermitian
form, there is no concept of the signature of (—, —), and we can always take an orthonormal
basis 1, ..., 1, of V with (1;,1;) = +1. In this case, the pin group defined as in (D.9)
is not a double cover of O(V), as in (D.10, D.11). To avoid it and retain the property that
Pin(V') is a double cover of O(V'), some literature defines (e.g. [Lou01, §17.3])

Pin(Vg) :={v1 - o | v € Vi, (v, v;) = +1} (D.13)
{z € Cliff(Ve)* | 0(x)Ver™' = Ve, 2Tz = +1} (e = +1)

= { {z € CEE(Ve)* | 0(x)Ver— = Vi, 6(2) T2 = +1} (Z _ gy B4
D {£eiki, (D.15)
or (e.g. [Dun07])
Pin(Vg) :={v1 - v | v € Vi, (v, v;) = —1} (D.16)
{z € CLff (Ve)* | 0(z)Vexr ™t = Vi, 0(x) e = +1} (e = +1)

= { {z € CLE(Ve) | 0(a)Ver ! = Ve, aTa = +1}  (e=—1) 17
DR EVASTIR (D.18)

These Pin(V¢) are double covers of O(V¢), that is,
1 — {£1} = Pin(Ve) 2 O(Ve) — 1. (D.19)

Spin group Spin(V')
We further define the spin group Spin(V) as

Spin(V) := Pin(V) N Cliff (V)" (D.20)
={vy vy | v; €V, (v;,v;) = £1} (D.21)
={z € (Clit(V)")* | 2Va™' =V, 2"z = +1}. (D.22)
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If we define SO(V') as
SO(V) := O(V)NnSL(V), (D.23)
then in parallel with (D.10), we have an exact sequence
1= F — Spin(V) 5 SOV) — 1, (D.24)

where F'is defined as in (D.11).
Again, here are some important remarks on the definition of Spin(n).

* Suppose K = R. If (—, —) is positive- or negative-definite, then we may retain only one
corresponding sign of the condition (v;,v;) = £1 of (D.21). (D.22) holds even if we
replace x7x = +1 with 7z = +1. In this case, Spin(V) with dim V' = n is also written
as Spin(n), which is a subgroup of Pin™(n).

* Suppose K = C. In this case, the spin group defined as in (D.20) is not a double cover
of SO(V') again, as in (D.24, D.11). To avoid it and retain the property that Spin(V') is
a double cover of SO(V), some literature defines Spin(V¢) as the intersection of Pin(V¢)
defined in (D.13) or (D.16) and Cliff (V')°. That is,

Sle(V(C) = {Ul Uy ’ V; € V(C, <’Ui, UZ'> = +1} (D25)
={v1 vy | v € Ve, (v, v) = —1} (D.26)
= {z € (CLff(Vp)")* | Voo™ = Ve, 270 = +1}. (D.27)

This Spin(V¢) is a double cover of SO(V¢), that is,
1 — {£1} — Spin(Ve) & SO(V¢) — 1. (D.28)

D.2 Explicit Form of Lift of SO(n) to Spin(n)

From now on, we assume V' is an n-dimensional R-vector space, and the symmetric bilinear form
(—,—) on V is positive-definite. We fix the definition of the Clifford algebra as Cliff(V) :=
T(V)/u®u ~ —(u,u). In this Section D.2, we explicitly describe the lifts of elements of SO(n)
to Spin(n).

To begin with, let us see that ¢ : Spin(n) — SO(n);z — x e 2! is in fact surjective in this
case. Recall that the reflection with respect to the hyperplane perpendicular to a vector v € V' can
be realized as in Lemma D.1.

* First, any two-dimensional rotation is a composition of two reflections, which can be shown
as follows. Suppose we take a basis of 1 so that the first two basis vectors span the two-
dimensional plane to rotate. Then the matrix representation of the reflection with respect to
the hyperplane perpendicular to ¥ = (cos 6,,sin6,,0,...,0) is

1 —20+1  —2vvy c1 —cos20, —sin26,\ (¢
- D.2
(C2> ~ ( —2uv =205 +1) \e —sin26, cos26, e )’ (D.29)
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and the other components are just mapped by the identity matrix. Therefore, the composi-
tion of two reflections is

(— cos 20, —sin 29v/) (— cos20, —sin QOU) B (cos 20, —0,) —sin2(0, — GU))

—sin20,  cos 20, —sin26, cos 26, sin2(0, —6,) cos2(0, — 6,)
(D.30)

* Second, as in the following Lemma D.2, any matrix in SO(n) can be block-diagonalized
into two-dimensional rotation matrices, with a diagonalizing matrix in SO(n). That is,
for any rotation in SO(n), there is an orthonormal basis such that the whole rotation is a
composition of the two-dimensional rotations of the planes spanned by two axes among
them.

Lemma D.2. For any M € SO(n), there is O € SO(n) which block-diagonalizes M as

cos2mA\; —sin 2w\
sin2mA;  cos2mwAy

O MO = , (D.31)
cos 27r)\% — sin 27?)\%
sin 27?)\% cos 277)\%

if n is even, and

cos2mA; —sin 27w\
sin2wA\;  cos2mw)\;

O 'MO = , (D.32)

COS 2T An—1 —SIN27TAn—1
2 2

SIN 27T An-1  COS2TAn-1
2 2

if n is odd.

Proof. The real Schur decomposition states that there exists O e O(n) such that O 'MOis upper
quasi-triangular, which means

Biy Bia -+ DBim

B B Boy -+ DBy,
O 'MO = . 2mel (D.33)

Bm,m

where each B, ; is a 2 x 2 matrix or a number. Using (O~'MO)"(O~'MO
show that O~'MO is quasi-diagonal diag(Bi 1, ..., Bmm), and B;; € O

= I, we can further
2) or Bm‘ = +1. If
cosf sinf )

N ~—

B;; € O(2) and det B;; = —1, then such B;; € O(2) can be written as | .
’ ’ ’ sinf —cosf
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0 _qin? N N
C?Sg Smf) € SO(2). Then, since det(O~*MO) = 1,
S1n 3 COSs )
there are even number of B;; = —1, and the rest of B;;’s are 1 or elements of SO(2). Now,
by reordering the columns of O, we can make O~'MO into the form of (D.31, D.32) within

O e O(n). If det O = —1, then we just define O as O and obtain the lemma. If det O = —1, then

we diagonalize it to diag(1, —1) by (

we define O as Odiag(—l, 1,...,1), which only changes B; ; from the rotation matrix of angle 6
to that of angle —#, and we obtain the lemma. ]
Let 1, ..., %, be an orthonormal basis of V. From the above discussions, it is obvious that

for any O € SO(n) and its lift O to Spin(n),

ct !

(£O) [ (1) |+ || (FO) ™ = (1) O | & |, (D.34)

c" c

where O is represented as a matrix with respect to the basis {t },.

Let n be even below. Recall that the algebra of Cliff(V) is

(i} = =285, (1h)? = —1. (D.35)

We introduce
U, = iz(%i_l V1), ;= iz(@bgi_l —V—14y). (D.36)

They satisfy
(U, 0} ={T,,9,} =0, {¥,T,} =26, (D.37)

Setting 0,y = 7A; and 6, = 0 in (D.30), we can see that the lifts of R . x,..0) == (¥; —
e2VIING, Wi s W5) € SO(n) are

:E((COS 7T)\i)w2ifl + (Sin W)\i)wgi)wgz;l = q:((COS 7T>\z)1 + (Sin 71')\1')1/}21,11&21') (D38)

A

=: FR,. \,..0- (D.39)
In particular, if we define
T2i—1,2i = V2i—12; (D.40)
V-1, - — —
= (W - W) = V(-1 - W) = VEI(GT 4 1), (D.A1)
then we can see that (721 2;)* = —1, and therefore
R, x,..0) = €™hm2im12i, (D.42)
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So, 79;_1,9; corresponds to 2 inso(n).

O
Another way to check that e™"2i-1.2i is alift of R(q ;. .0) is showing e™"2i-1.2iJ je=mhirzi-1.2i —
€27r\/?1)\i5i’j \Ijj, which follows from \IjiTQifl,Qi = —7”21‘,1’21"111' = \/—_1\111
For more general M € SO(n), using Lemma D.2, we block-diagonalize it as

cos2mA; —sin2mw)\;
sin2mwA;  cos2mA;

O MO = R; = , (D.43)
COS 27r)\% —sin 27r/\%
sin 271‘/\% CoS 271'/\%

by O € SO(n). The lifts of Ry are

e
s

:I:RX ==+ (COS 7T)\Z' + w2i71w2i sin 7T)\z) ==+ €Tr)\ﬂ2i71’2i, (D44)
i=1 =1
and therefore the lifts of M = Rg = ORXO_1 are
:ER? = ZEOARXOA_l =+ H(COS ’/T)\i + (Owgiflé_l)(éiﬂgié_l) sin 7T)\z) (D45)
i=1
3
= = [J(cos A + (¥0)i1 (1VO)a; sin ), (D.46)

@
I
—

where @/7 = (¢1, .. .1,) is a row vector, and we used (D.34) in the last equation.
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E Some Comments on the Stolz-Teichner conjecture

In moonshine phenomena, the modular functions associated with CFTs (the partition functions or
elliptic genera) play a central role. In [ST11], a mathematical conjecture which suggests a stronger
relation between them was proposed, and moonshine has also begun to be studied in relation to
it [GJF18,JF20,Lin22, AKL22]. This conjecture is called the Stolz—Teichner conjecture.

The Stolz—Teichner conjecture says that the ring TMF, of the classes of “topological modular
forms” is isomorphic to the ring SQFT, of the equivalence classes of two-dimensional N' = (0, 1)
supersymmetric quantum field theories (SQFT). Its precise statement is beyond the scope of these
notes, but we add more information as follows.

TMF, is a generalized cohomology ring graded by integers v € Z. If we neglect the torsion
part of TMF,, that is, if we consider TMF, ® C, then it is isomorphic to the space (MF@)‘g‘h of the
weakly-holomorphic modular forms (Section 3.2) of weight £. Their addition and multiplication
correspond to the direct sum and the tensor product of SQFTs. The equivalence relations of
SQFTs are defined properly, and for example they include the continuous deformations.

The degree v of the space SQF T, specifies the gravitational anomaly of the theories belonging
to it, and if the theory is a two-dimensional N' = (0,1) SCFT of central charge (c,¢), then
v = 2(¢ — ¢). The map SQFT, — TMF, — (MFZ)‘%‘}‘ associates to a theory 7 its elliptic
genus’> normalized by n(7) as n(7)”Z,(7). Here, (MFZ)V%V“‘ is the ring of weakly holomorphic
modular forms with integral g-expansion coefficients. See for example [Tac21, TY23] for more
information accessible from the physics side.

If we believe this conjecture, then we can extract nontrivial statements on the space SQFT, of
SQFTs, by translating the properties of TMF,. Conversely, verifying such statements serves as a
test for the Stolz—Teichner conjecture.

For example, the map TMF, — (MF)%™" is not surjective, and an element of its image
2

generated only by 7)(7) over Z is in the form of _- d(2§4,k)17(7)24k with k an integer [Hop02, Prop.

4.6]. This suggests that if an N' = (0, 1) SCFT with degree 2(¢ — ¢) = 24k has a constant elliptic

2Here, the elliptic genus is in the sense of (3.46). We only deal with CFTs in these notes, but a similar discussion
of elliptic genera can be repeated for modular-invariant (up to gravitational anomaly phases) QFTs. The modular
transformations of the elliptic genus are [TY Y23, §2.1]

Zan(t+1) = e ™V 7, (1), (E.1)
]. v
chl(*;) = 677“/771Z ZCH(T). (E.2)

(cf. In the theory of one real free chiral fermion with central charge ¢ = %, the lowest conformal weight in the R
sector is %6 = §, SO qLO*ﬁ — e’“/jl%q%’ﬁ under 7 — 7 + 1.) Here, Zo(7) = 0 unless v is a multiple
of 4, because we obtain Zg (1) = e~ 214 Zen(7) by applying the modular S transformation twice. So, either
Zen(7) = 0, or the phase of the modular S transformation is just a sign. As a result, by combining the elliptic genus
with the Dedekind eta function 7(7) (see Appendix B), we can see that ¥ (7)Z(7) is in fact a modular function of

weight 5.
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genus 7, then Z7, is divisible by m.

In fact, the Conway moonshine module is such an SCFT with minimal non-zero £ = +1 and
elliptic genus 24. The Conway moonshine module or Duncan’s module V/% is (the NS sector
of) a chiral N' = 1 SCFT, whose automorphism group Aut—;(V /%) preserving its N' = 1
superconformal algebra is isomorphic to the sporadic Conway group Co;. It was first constructed
by Duncan in [Dun0O7], from the theory of 24 real free chiral fermions, through the procedure
similar to Zsy-orbifold. So its central charge is ¢ = % x 24 = 12. Therefore, by placing it to
the right-moving part, and setting the left-moving part trivial,” we obtain an N' = (0,1) SCFT
belonging to SQFT,,. Moreover, the elliptic genus of Duncan’s module is a constant (the Witten
index; see Section 3.4) thanks to the N' = 1 supersymmetry, and its value is 24. As a result,
Duncan’s module V' /% is a minimal nontrivial SCFT satisfying the divisibility property suggested

by the Stolz—Teichner conjecture.

Another example of implications from the Stolz—Teichner conjecture is our main interest.
There exists a class called the periodicity element in TMF _542__ 576, such that multiplying any
class of TMF, by it gives rise to a bijection TMF, — TMF,_576. This suggests the existence of
an ' = (0,1) SQFT of degree —576, whose elliptic genus is 1.

In [AKL22], a conjectural construction of such an SCFT was proposed based on Duncan’s
module V7%, More precisely, they proposed a chiral V' = 1 SCFT of central charge ¢ = % = 288
with a unique vacuum state in the NS sector, with the expectation that its elliptic genus is 1. If we
have such a theory, then by regarding it as the left-moving part coupling to the trivial right-moving
part, we obtain an SCFT of degree v = 2(0 — 288) = —576, corresponding to the periodicity
element. The explicit construction of such an SCFT is not yet known,”* so if we can verify that the
proposed theory indeed has the elliptic genus 1, then it provides a piece of evidence supporting the

>3Similarly, if we place Duncan’s module to the left-moving part, and set the right-moving part trivial, then we
obtain an SCFT belonging to SQFT _,,. Of course, its elliptic genus is also 24.

>4There is also the periodicity element in TMF57¢. It is known [Dev19] that for any class of TMF,, with positive
degree v > 0, there exists a corresponding SQFT as an A/ = (0, 1) sigma model, but the explicit construction of its
target manifold is highly nontrivial.

We also note that, if we allow multiple vacua in the NS sector, then a construction of a chiral N' = 1 SCFT of
central charge ¢ = 288 and elliptic genus 1 is known as [AKL22, Eq. (1.5)]

24697376(V/%)®2* @ 1291795102224619090515486568295959(V/4)©24 /S, 4. (E.3)

Since the elliptic genera of (V#)®24 and (V/%)®24/8,, are constants (the Witten indices) and coprime, these coef-
ficients are found as a solution to the Bézout equation. However, this theory has massively degenerate vacua.

We expect the existence of an SQFT with a unique vacuum corresponding to the periodicity element because of
the following facts. First, according to the classification of the chiral fermionic CFTs of central charge ¢ < 24
[BSLTZ23, Ray23, HM23], every class of TMF, with —48 < v < 0 is realized by a CFT with a unique vacuum.
Second, the above sigma model description guarantees the existence of an SQFT with a unique vacuum for each
positive-degree class, so if we had an SQFT corresponding to the periodicity element of degree —576 with a unique
vacuum, then by using TMF, — TMF,_574, we can conclude the existence of an SQFT with a unique vacuum for
any class of TMF,.
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Stolz—Teichner conjecture. See [JFY24] for another study of the periodicity element in SQFT,.

The SCFT proposed in [AKL22] is expressed as (V/%)®24/A4,, x Co;. Let us see how they
arrived at this theory.

Since Duncan’s module V' /% has central charge 12, its 24-fold tensor product (V' /%)
has the central charge ¢ = 12 x 24 = 288. The elliptic genus of Duncan’s module V/% is 24,
and thus the elliptic genus of (V/%)®2* is 244, which is much larger than 1. Even so, since V/*
have a quite large symmetry, the Co; symmetry, we can try taking the orbifold by this symmetry.
Orbifolding is a procedure to make a G-invariant theory 7 /G from a theory 7 with a finite group
symmetry G. It first adds some states to the theory, but then takes the projection onto the G-
invariant states, so we can expect the number of states to decrease.

However, we cannot always construct the orbifold theory. There can be an obstruction called
the anomaly of the symmetry. One miraculous thing is that the anomaly of the Co; symmetry of
Duncan’s module V'/% is described as the generator of a group SH (Coy) = Zy, [JF17, Example
2.4.1], and therefore the anomaly of the diagonal Co; symmetry of (V/%)®24 vanishes. Hence, we
can take its orbifold as (V/#)¥24/Co,.

Compared with 24%* ~ 1.3 x 1033, the order |Co;| ~ 4.2 x 10'® of Co; is still small, so it
is conjectured that we have to take the orbifold by a bigger group. In [AKL22], they calculated

that the orbifolds of (V fry@24 by the symmetry grou 524 and its alternating subgrou A24, which
y y Yy g p g g p
él‘lffh)®24/524 .

®24 indeed

act as permutation of the factors of the tensor product, have the elliptic genera
—25499225 and ZS{MWI/A% = 381058359637574 ~ 3.8 x 10'. Since these values are smaller
than |Coy|, it is promising to take the orbifold of these theories by the Co; symmetry.

In [AKL22], they further claim that the combined symmetry Sy, x Co; is anomalous™ (al-
though only Sy, is non-anomalous). As a result, they finally conjecture that the desired SCFT with
elliptic genus 1 is (V75)®24 /4,5, x Co;.

Lastly, we remark that the way of constructing an orbifold 7 /G from a given theory 7 and
its symmetry G is not unique, and there exists a degree of freedom called the discrete torsion. In
principle, once we construct one of the orbifolds in a consistent way, then all the other orbifolds
can be constructed from it (see Section F.1.3).

35Let us review their discussion. In the theory of n real free chiral fermions, the group SO(n) acts on the NS sector
as a genuine representation, but it acts on the R sector only as a projective representation; what really acts on the R
sector as a genuine representation is its double cover Spin(n) & Z5.SO(n). This appearance of the projective phase
of the SO(n)-action on the R sector is regarded as a part of the fermionic anomaly. Similarly, Co; genuinely acts on
the NS sector V /%, but it acts on the R sector chf only projectively, and what genuinely acts on Vt{:,h is Cog = Zy.Co;.
If this anomaly is vanishing, then Co; also acts on Vt";u genuinely, and the action of Cog becomes unfaithful because
the action of Zy C Cog becomes trivial. According to [AKL22], the action of Cog on the R sector of the orbifold
(Vf h)®24 /S24 is faithful, so Co; can act on this R sector only projectively, which means this S24 x Co; symmetry is
anomalous. On the other hand, the action of Cog on the R sector of (V' /8)®24 /A, is unfaithful.
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F Review of Orbifolds

This Appendix F reviews the theoretical foundations of orbifolds. Orbifold is a procedure to make
a new theory from a theory with a finite group symmetry, but in general, such a symmetry has an
obstruction to the orbifold, called anomaly. In Section F.1, we will review the concept of anomaly,
and when and how we can make it vanish. In Section F.2, we will write down the partition function
of the orbifold theory, and describe some properties of the twisted partition functions.

F.1 ’t Hooft Anomaly

An ’t Hooft anomaly [tH80] is a quantum anomaly of a global symmetry G of a theory 7. When
T is a bosonic theory of d + 1 spacetime dimensions with d = 0, 1, 2, its "t Hooft anomaly is
classified by H*2(G; U(1)). When it is not trivial, it is an obstruction to orbifolding 7 by G. In
this Section F.1, we will review it, starting with the case of 0 + 1 dimension. At the end, we will
describe the anomaly of the Conway symmetry of Duncan’s module.

F.1.1 Anomaly in 0 4+ 1 Dimension

Let 7 be a 0+ 1 dimensional quantum field theory (QFT), namely, a quantum mechanical system,
with a finite group symmetry GG. The action of ¢ € GG on the Hilbert space H is implemented by a
unitary operator U, : H — H. The group structure requires that the successive implementation of
U, and U}, should be equivalent to Uy, but since the physical states are defined only up to U(1)
phases, an additional phase factor «(g, h) € U(1) can appear as

UgUp = a(g, h)Ugy,. (F.1)

If we draw the one-dimensional timeline, the Hilbert space H is living on each point, and the
action of Uy is depicted as a point operator, as in the following pictorial equation:

s 10,

§ : F2
h v, CY(g, h) gt Usn (F2)

The phase o compensates the change of the intermediate picture, while keeping the action of the
symmetries from the starting Hilbert space to the ending Hilbert space.

Therefore, G' acts on H as a projective representation, or a representation of an extension
of G by U(1), and its equivalence classes can be classified by the cohomology classes [a] €
H?*(G;U(1)). If we state it more concretely, the associativity (U,U,)Uy = U,(U,Uy) (or the fact
that the operator obtained as the fusion of ordered three operators is independent of the history of
changing pictures) imposes the 2-cocycle condition on «, and redefining U, as 5(g)U, (5(g) €
U(1)) changes « by the 2-coboundary df3. In this way, the cohomology class [o] € H*(G;U(1))
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is associated with the theory 7. This is the 't Hooft anomaly of the G symmetry of 7, and « is
referred to as the anomalous phase.

When the cohomology class [a] € H?(G; U(1)) is trivial, we say that the anomaly is trivial or
vanishing, the symmetry is non-anomalous, or the theory is anomaly-free. In such a situation, by
the redefinition of U, we can make a(g, h) = 1 forany g, h € G, so that G acts on H as a genuine
representation. Otherwise, the ‘projection operator’ P := ﬁ > gec Ug onto G-invariant states is
not truly the projection, for example because U, P # P. Analogously, a nontrivial anomaly in
1 + 1 dimensions is an obstruction to orbifolding or gauging the theory, which is a procedure to
make a G-invariant theory.

F.1.2 Anomaly in 1 + 1 Dimensions

Next, let 7 be a 1+1 dimensional QFT with a finite group symmetry®® G. On the two-dimensional
spacetime, the group action U, : ‘H — H on the time-sliced Hilbert space H is depicted as a
horizontal line. Moreover, if the symmetry action is local, then we may perform it only on a
segment or a half-line of the entire one-dimensional space. As a result, the defect, or the twisted
boundary condition, appears at the boundary, and it is depicted as a vertical line (see Figure F.1).
We can also define more curved lines by moving the boundary (see for example [Sei23]). We will
write the g-twisted Hilbert space, realized by the action of g on the right-half space, as H,. If
there are multiple twisted boundary conditions ¢y, . . ., g, inserted, then the twisted Hilbert space
is denoted by H,, . 4,

Ug (on the half space)

(a) ()

Figure F.1: (a) The action U, : H — H of g € G depicted as a horizontal line. (b) The twisted
Hilbert space implemented by the half-space action.

The fusion of such lines is implemented by the fusion operator

g = Hon = Han. (F.3)

% As seen in Section F.1.1, a symmetry G of a 0 + 1 dimensional theory acts on the Hilbert space as a projective
representation. In 1+ 1 dimension, on the other hand, when we say that the theory has a symmetry G, we assume that
G acts on the untwisted Hilbert space as a genuine representation. Even so, it can acts on the twisted Hilbert spaces
as projective representations.

For example, the automorphism group Aut(V') of a VOA V acts on the untwisted Hilbert space V' as a genuine
representation, by its mathematical definition. For a monster VOA V%, the anomaly of Aut(V%) 2 M is known to
have order 24 in H3(M; U(1)) [JF17, Thm. 1]. So it is conjectured that H3(M; U(1)) & Zay4 in [JF17].
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The order of the fusion of three lines H, ;1 — H4ni should not affect the physics, which implies
the existence of a phase factor a(g, h, k) € U(1) such that

Ugn tign = (g, b, k)ugne(Ugun U, ), (F.4)

where U, o U~ ! appears because we implemented the g-twist on the time-sliced Hilbert space by
letting U, act on the right-half space. As a pictorial equation,

Ugh, k Ug, hk
%A = afg,h, k) />g\uh,k. (E.5)

g h k 9 h k

Again, the phase o compensates the change of the intermediate picture, while keeping the action
of the symmetries from the starting Hilbert space to the ending Hilbert space.

We omit the details, but the pentagon identity (the fact that the final picture obtained by
changing the order of fusions from the given picture is independent of the history of changing
pictures; see Figure F.2) imposes the 3-cocycle condition on «, and redefining w5, as 5(g, h)ug s
(B(g,h) € U(1)) changes « by the 3-coboundary d.

A
VSN
\/&\_’/A\/

Figure F.2: The change of pictures to obtain the pentagon identity.

In this way, the cohomology class [a] € H?(G;U(1)) is associated with the theory 7. This
fact was known in the context of algebraic QFT [Mug04], and also established in the context of
condensed matter physics in [EN14]; see also [Sei23]. This is the 't Hooft anomaly of the G
symmetry of 7.

F.1.3 Canceling Anomaly and Discrete Torsion

As we will see in Section F.2, the orbifold of a (1 + 1)-dimensional CFT 7 by G is constructed by
adding the twisted sectors and projecting them onto the G-invariant states. Assume that we define
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the action of U}, on the twisted sector H,4, where g and /» commute, as

(F.6)

(If g and h do not commute, U;, maps H, to Hjg,-1.) If the anomalous phases « in (F.5) are
nontrivial, then the composition U, Uy, of actions on H, differs from Uy, by a U(1) phase, so we
cannot define the appropriate projection operator as ﬁ > gec Uy, for a similar reason to the case
of 0 + 1 dimension in Section F.1.1. This is an obstruction to orbifolding.

Moreover, a nontrivial anomaly is also an obstruction to the modular invariance of the orbifold.
Assume that we define the twisted partition function Z 5(7') on a torus for commuting g and A as

9

Z;(T) = 7|, h. (E.7)
g

Then, the anomalous phases appear in the modular transformations, say the modular S transfor-
mation, as

g h

Z;L(T) =7 /1*%‘/] = Z '{I‘H—ﬂ

9 h

h

—1
(phase from «) Z !/‘Hi!/ — (phase from o) Zz (7‘) . (E.8)

h

Such phases break the modular invariance property of the orbifold theory, unless the anomalous
phases « are all trivial.

If the cohomology class [a] € H3(G; U(1)) is trivial, then by taking a 2-cochain (3, such that
alg,h, k) = dBo(g,h, k) = Bo(h,k)Bo(gh, k)~ Bo(g, hk)Bo(g, h)~" and rewriting (F.4) using a
new fusion operator (u) 4 := So(g, h)u,n, we can remove the anomalous phase « from (F.4), so
that the obstacle to a modular-invariant orbifold theory does not exist. In particular, if we write
the twisted partition function defined as in (F.7) using fusion operators u, j, as Z (u) Z(T), then the
new twisted partition function is

Z(UO)h<7—) _ BOU%Q) Z(u)h(7_)7 (F9)
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and this Z (%) Z(T) is the twisted partition function we can actually use for the computation of the
twisted partition function of the orbifold theory.

However, there is a degree of freedom in the choice of the 2-cochain 3, which is a solution to
the equation o = df,. In fact, even if we multiply one solution (3, by a 2-cocycle j3, the resulting
By - B is also a solution.”” If we define another new fusion operator (u}),5 := Bo(g, h)B(g, h)ug p,
then the resulting twisted partition function Z (“5)’;(7) is different from the originally modified

one Z")"(7) by % in general. When the 2-cocycle 3 is just a 2-coboundary ((g,h) =

dy(g,h) = v(h)y(gh)~'v(g), then this difference gEZh; is just 1 because g and h commute,
and hence Z(“0)"(7) is the same as Z("0)" (7).

As aresult, we can say that if there is one way of canceling the anomaly (using (), then there
are #H?(G;U(1)) different ways of canceling the anomaly (using (3,3 for [3] € H*(G;U(1)))
leading to different twisted partition functions, and hence different orbifold theories. This degree
of freedom is called the discrete torsion.

F.1.4 Anomaly in Fermionic Systems

Finally, we briefly mention the anomaly in fermionic systems. Let us consider a fermionic theory
with a finite group symmetry G. We demand that the G-action should preserve the parity, that
is, it should commute with the symmetry Z, = ((—1)¥) defining the fermionic parity.’® (As a
remark, in mathematics, the definition of an automorphism of a VOSA contains the condition that
it preserves the parity.) We also assume that G acts on the NS sector as a genuine representation,
but G may act on the R sector as a projective representation, and it is regarded as a part of the
fermionic anomaly. A prototypical example® is that, SO(n) acts on the NS sector A(a) of n real
free fermions as a genuine representation, but it acts on the R sector A(a)y,, only as a projective
representation. This is because what really acts on A(a)y,, as a genuine representation is its double
cover Spin(n) = Z,.S0(n); the projective SO(n)-action on the R sector is the composition of a
section s : SO(n) — Spin(n) and the genuine Spin(n)-action.®

Whereas the bosonic anomalies in 1+ 1 dimensions are classified by the ordinary cohomology

7Since U(1) is a multiplicative group, the linearity of the differential d is d(fBy - 3) = df3y - d}3, and the cocycle
condition is d8 = 1.

38 A fermionic theory 7[o] on a space-time manifold M depends on the spin structure o on M. The set of
spin structures is an affine space modeled on H'(M;Zs), so by introducing a Zy gauge field A € H'(M;Zy)
as To, A] := T[o + A] up to anomalous phases [BSZ24], we obtain the canonical Zy symmetry ((—1)%) of the
fermionic theory. Then the assumption that G’ commutes with (—1)" also means that the G-action does not change
the NS sector to the R sector, and the R sector to the NS sector. See also footnote 34.

Note that, in [DGG21], the action of a symmetry G is assumed not to contain the change of spin structure o (Be
careful that this change seems denoted by the action by (—1) there, and Gy = ((—1)¥).G), but by absorbing the
change of ¢ into the change of the gauge field A, we can also apply the discussion there to G containing (—1)%".

% Another example is that, V% admits the action by SemiSpin(24) (or Co; € SemiSpin(24) if we take the N = 1
structure into account), but it acts on Vt{:,h only as a projective representation, because what really acts on Vt{:,h as a
genuine representation is its double cover Spin(24) (or Cog C Spin(24)).

%0Since SO(n) is a continuous group, we cannot apply the discussion of Section F.1.2. In particular, we cannot
naively say that “the anomaly of SO(n) is classified by H3(SO(n); U(1)).”
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H3(G;U(1)), the fermionic anomalies in 1+ 1 dimensions are classified by the supercohomology
SH?*(G) [KT17,WG17]. As aset, SH*(G) is the same as H>(G; U(1))® H?*(G; Zy)® H (G; Zs).
The first layer H*(G;U(1)) is coming from the anomalies similar to the bosonic cases. The
second layer H*(G; Zs) is coming from the fact that the fusion operators u, j, can have fermionic
parities in the fermionic cases (see e.g. [EN14, Tacl18, OSTZ25]), and sometimes called the Gu-
Wen layer [GW12]. The third layer H'(G; Z,) describes anomalies which occur when the number
of Majorana fermions is odd, for example at the edge of the Kitaev chain [Kit00].

As an example, the anomaly of a Z, symmetry of one real fermion in 1 4+ 1 dimensions
corresponds to the generator of SH (Zy) = H3(Zo; U(1)).H*(Zo; Zs). H (Zg; Zy) = Ly Ly Ly =
Zsg. See [DGG21] for more details.

In higher d + 1 dimensions, the fermionic anomalies are classified by a certain generalized
cohomology theory (the Anderson dual of the spin bordism group QZTQ](BG)) [KTTW14,FH16,
GJF17,Yon18], and the supercohomology S H%2(() only captures the first three layers of it.

In the case of the Co; symmetry of Duncan’s module V/%, it is known [JF17, Example 2.4.1]
that its anomaly is the generator of SH?(Coy) = H?(Coy; U(1)).H?*(Coy; Zo) = Zio. Ly =2 Zny.
Therefore, if we take the 24-fold tensor product of V/% @ thvh, its diagonal Co;-action is non-
anomalous, and we can consider the Conway orbifold theory (V/# @ thvh)®24 /Coy. Recall that the
Zo symmetry defining the fermion parity of Vit g thvh is <—1semispin(24)>- Since —Isemispin(24) 18
not contained in Co; C SemiSpin(24), this orbifold does not mix the NS sector and the R sector
(see footnote 58).

Remark F.1. The anomaly of the Co, symmetry of V% is also known [JF17, Example 2.4.1] to be
the generator of SH?(Cog) = H?(Cop; U(1)) = Zay. (In fact, we have seen that H?(Cog; Zs) is
trivial in footnote 37.) So we can repeat the similar arguments for V. (Remark ends.)

Remark F.2. Since SH?(Coy) = Zsy, we may consider the orbifold of (V% @ V/#)#2* by the
preimage Co, C Spin(24) of Co; C SemiSpin(24). The action of Coy on V/% & V/* is the
same as that of Co; (see footnote 59), but the number of twisted sectors are different (Co; has
101 conjugacy classes, whereas Cog has 167 conjugacy classes), so (V7% @ thf)@m /Coy and
(V% @ V/%)®24 /Co, are different theories. (Remark ends. )

F.2 Orbifold Partition Function

If a CFT 7 has a non-anomalous finite group symmetry (G, we can construct a new CFT T /G
called the orbifold of 7 by G, consisting of G-invariant states. In this Section F.2, we will review
it, focusing on its partition function. After reviewing the construction of orbifold in Section F.2.1,
we will reduce the expression of its partition function, using the properties of the action of G on
twisted sectors in Section F.2.2. We will investigate the SL(2,Z) and GL(2,Z) transformations
of the twisted partition functions in Section F.2.3.
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F.2.1 Basic Construction of Orbifold

Let 7 be a two-dimensional CFT on a torus with a non-anomalous finite group symmetry GG. The
orbifold T /G of T by G is constructed by the following two steps (see e.g. [Pol07, §8.5]).

1. Add all the twisted sectors H, (g € () and define
Mo = P H,. (F.10)
geG

where 7 is the Hilbert space of the original theory 7.

2. Define the Hilbert space HT/G) of the orbifold T /G as the G-invariant states of H.;. That
is,

1
2(TIG) . (@ > Ug> Hiot. (F.11)

geG
We define the twisted partition function of T, with spatial twist g and temporal twist h as

20 (r) 1= Tew, [Ung" 51075 (g 1= ™), (F12)

where Uy, : Hiot — Hiot 18 the unitary action of h € G, and ~ denotes the right-moving part,
although we will discuss chiral theories with only left-moving parts after this Section F.2. Recall
that, in general, we need the phase modification (F.9) to make the anomalous phases trivial. Let

ZéT)Z(T) denote the twisted partition function after the phase modification. The partition function
of the orbifold 7 /G is then
1
2T () = = 30 44 (7). (F13)
‘ ’ g,heG

In the rest of this Section F.2, we will investigate the properties of the above concepts, and
rewrite the orbifold partition function (F.13) so that the number of summands will be reduced.
F.2.2 Twisted Partition Functions As Class Functions

We have added the twisted sectors. In the field description, a field ¢(c', o%) belonging to the
g-twisted sector H, satisfies

(o +2m,0%) = g- p(ct,0?). (F.14)
Then we can see that the action U, : Hoy — Hior Of h € G restricted to H,, is
Uy, - Hg — thhfl, (FlS)

because if ¢(o!, 02) belongs to the g-twisted sector, then ¢ (o', 0?) := h - ¢(o!, o?) belongs to

the hgh~!-twisted sector as
¢ (o' + 2w, 0%) = hgp(o',0?) = hgh™'¢/ (o', 0?). (F.16)

This fact leads to the following two consequences on the twisted partition functions.
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(1) Since Uy, : Hy — Hpgn-1,
ZS(7) = Try, [Upg™ 51g20~ 1) = 0 if hg # gh. (F17)

In other words, H, is a representation of the centralizer C, := {h € G | hg = gh} of g. (If
G is anomalous, then #, is just a projective representation of Cj.)

(2) The representations of the chiral algebra A on H, and H;,-: are equivalent under Uj,. That
is, if we write the representation of A on #,, as p, : A — End(H,), then

Unpy(®)U; " = pagh-1(e)- (F.18)
Therefore,
ZST)ng—l(T) =Ty, s [Uhqp’“g’“‘l(LO)fiqﬁ"’g"’_l(m*%] (F.19)
=Try,, [UUpgPs o)~ 31 gpalo) =55 =1 (F.20)
— Try, [Uy1 UpUyq?r o)~ 51 gPalo) =53] (F21)
= 7§ (7, (F22)

where we used the cyclicity of the trace in the third equation. In other words, the twisted
partition functions are class functions in the sense that
T T)khk~
2§50 () = 25 (). (F23)
Combining (F.17) and (F.23), the twisted partition functions ZéT)Z(T) can be regarded as a func-
tion over the conjugacy classes of the commuting pairs

Glom/~ = {(9,h) € G x G| gh = hg}/(g,h) ~ (kgk™", khk™"). (F.24)

com

Let G/~ = G/(g ~ kgk™') denote the set of conjugacy classes, and [g] € G/~ be the
conjugacy class of g € G. We introduce the notation Z[ 4leG/~ o represent the sum de (o100}
over a complete set {g1, ..., g,} of representatives of the quotient G/~ = {[¢1], ..., [g-]}. When
this notation is used, the sum is supposed to be independent of the choice of the representatives.
Now, using

ST 2 () =3 2 () =3 2 (F25)

heG heG heG
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the orbifold partition function is

274 (7 Z S zi” (F.26)

gEG’ heG
T)h
’G| Sl oz (E.27)
[g]EG/N heG

=y > z§Ph(r (F.28)

lgleG/~ | g| heG
= Y oA (F.29)
gleG/~ hec

where in the third equation, we used |G| = |[g]||C,|.
We can further decompose the centralizer Cj into conjugacy classes [h]-c, € Cy/~. Then,
since Z§ K (7) = 2§70, (1) = 257 (r) for k € C,

[[Rlce,| o1
AL Z Z —|(,S| Zé >g(r). (F.30)
[91€G/~ [hccy€Cq/~ g

Finally, recall that Z, ;,(7) can be regarded as a function over G2/~ defined in (F.24). The
summands of (F.30) are labeled by®' [h]cc, € || Cy/~. Itis straightforward to show that the

lgleG/~
map [h]cc, — [(g, h)] defines a well-defined*” bijection | | Cy/~ — G2 /~. Therefore, we
lg]eG/~
have
h
AUSICEIEY Ilhlec, | ]CC-‘"ZST)’;(T). (E31)

el

[(9:M)]€GEom/~

F.2.3 Modular Transformations of Twisted Partition Functions

Under the modular transformations, the twisted partition functions transform as (see e.g. [Pol07,

§8.5])

Z§PM (1) = 2579 (r), (F.32)
Tn, L T)g~!
25~ =25 (7). (F:33)

if the phases caused by the gravitational anomaly in the modular transformations (E.1, E.2) are
trivial, that is, 2(¢ — ¢) = 0 mod 24; the gravitational anomaly phases cannot be canceled by the
phase modification (F.9) to cancel the 't Hooft anomaly. It then follows that the orbifold partition
function Z 7/ (1) =37 . Z (Mh "(r) is modular invariant.

1 Although the set || Cy/~ = (Cy,/~) U --- L (Cy,./~) depends on the choice of the representatives
lgleG/~
{91, .., 9r} of G/~, the sum (F.30) is independent of such a choice.
621t is well-defined in the sense that if [h]c, = [h/]cc, then [(g, h)] = [(g, )]
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Modular transformations of fermionic twisted partition functions

Assume that the theory 7 is fermionic and let ((—1)%) denote the Z, symmetry defining the
fermion parity. We demand that the symmetry G should commute with (—1)¥. We then define
the twisted partition functions for g, h € G as

ZTNE(T) = o, [UngHo~H1 G207 31), (F34)
ZTRE(7) 1= e, [(—1)F Upgho~Figho—3i), (F.35)
Z(T)NSh(T) 1= Tryg, [UthO_inO_i], (F.36)
ZMRN(7) = Tryg, [(—1) Upg™o~ 51 gk 721, (F37)

and again, let ZO "(r) (X,Y € {NS,R}) denote the ones after the phase modifications (F.9),
when G is non- anomalous.

The modular transformations of these twisted partition functions can be derived by the path
integral formalism on a torus as follows. We have seen in footnote 30 that, in the cylinder co-
ordinates, the NS sector is anti-periodic and the R sector is periodic in the spatial direction. In
addition, unlike the bosonic path integral, the fermionic path integral which is periodic in tempo-
ral direction corresponds to the trace with (—1)" inserted, and the anti-periodic one corresponds
to the usual trace [Pol07, Appendix A.2]. As a result, we may regard NS and R in (F.34)—(F.37)
as the nontrivial element and the identity element of Z, = ((—1)"), respectively. This discussion
leads to the modular transformations of the fermionic twisted partition functions as

2y NS+ 1) = 2R (), A1) = 2N (), (F.38)
AP+ ) = AT, AT = 2D, @39
2R ) = 2R (), 2NN = 2% o), (F40)
2y R+ 1) = ZgRg (7). AV () = 2% (), (F41)

if the phases caused by the gravitational anomaly are trivial. More schematically,
sOZSNEE ZTR & 2T o, ZTROps . (F42)
If G contains (—1)%, then we should have
2% ) = 7N ), (F43)
from the definitions (F.34)—(F.37) of the twisted partition functions, and
25Xy () = 25 R0, (F44)

from the discussion above. Here, we introduced the notation

NS:=R, R:=NS. (F.45)
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GL(2,Z) transformations of twisted partition functions

By adding the action of P : 7 — —7 to the T and S transformations, the SL(2, Z)-action
enlarges to the GL(2, Z)-action. Under the P transformation, the twisted partition function trans-
forms as

Z(()T)g<_7—_) _ TngUh€—2ﬁ¢j1f((Lo—7§)—(io—fi)) (F.46)
_ 'Tngeﬁﬁr((%*i)*(ﬂri))UH* (F47)
_ _TngUhqeQWﬁT((LO_i)_(ZO_%))]* (F.48)
_ Z((]T)Z_I(T)] ’ (F49)

where in the second equation, we simply used TrM = [TrM']*, and in the third equation, we used
the fact that L, is Hermitian and U}, is unitary. It then follows that the orbifold partition function
ZTI(r) = 3, hea Z(ST)Z(T) satisfies Z(7/9) (—7) = Z(T/G)(r)*. Similarly, for a fermionic
twisted partition functions Z(()T)}g;} (1) X,Y € {NS,R}), we have Zéﬂgl(—i—) = [Z(()T)%;rl (7)]*.
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