

On Two-Dimensional Chiral Conformal Field Theories with Sporadic Finite Simple Group Symmetries

Masaki Okada

Kavli IPMU, the University of Tokyo

January 22, 2026

Outline of my dissertation

Part I. Review of Basic Concepts

Part II. Review of Moonshine Phenomena

Part III. Symmetry of Lattice CFT

based on [Okada 2412.19430, JHEP06(2025)208]

Part IV. The Conway Orbifold of Duncan's Supermoonshine Module
based on [Albert, Kaidi, Lin, Okada, Tachikawa in preparation]

Part V. Conclusion

Part VI. Appendices

This talk focuses on Part IV.

Plan of this talk

- ▶ Introduction
 - ▶ What we want to do (Slides 3–5)
 - ▶ Why we want to do it (Slides 6–9)
- ▶ Review of orbifolds (Slides 10–13)
 - ▶ construction, partition function, anomaly
- ▶ Compute the Conway orbifold partition function
 - ▶ Step 1. Conjugacy classes of commuting pairs (Slide 14)
 - ▶ Step 2. Twisted partition functions of Duncan's module (Slides 15–18)
 - ▶ Step 3. Anomaly-canceling phases (Slides 19–22)
- ▶ Future directions (Slide 23)

What we want to do

(In this talk, we always consider CFTs on 2d torus.)

We want to compute **the partition function (the Witten index)**

$$Z^{((V^{\text{fb}})^{\otimes 24}/\text{Co}_1)}(\tau)$$

of a certain **orbifold theory**.

In general, the **orbifold** \mathcal{T}/G is a G -invariant 2d CFT constructed from a 2d CFT \mathcal{T} with non-anomalous finite group symmetry G , and its partition function is

$$Z^{(\mathcal{T}/G)}(\tau) = \sum_{[(g,h)] \in \{gh=hg\}/\sim} \frac{|[(g,h)]|}{|G|} \beta(g, h) Z_g^{(\mathcal{T})h}(\tau).$$

Step 1. List the conjugacy classes of commuting pairs

$$\{(g, h) \in G \times G \mid gh = hg\} / (g, h) \sim (kgk^{-1}, khk^{-1}).$$

Step 2. Compute the twisted partition functions $Z_g^{(\mathcal{T})h}(\tau)$.

Step 3. Determine **the phases** $\beta(g, h)$ to trivialize the anomalous phases.
(Note: more fundamental problem than the discrete torsion.)

What we want to do

- Step 1. List the conjugacy classes $[(g, h)]$ of commuting pairs.
- Step 2. Compute the twisted partition functions $Z^{(\mathcal{T})_g^h}(\tau)$.
- Step 3. Determine **the phases** $\beta(g, h)$ to trivialize the anomalous phases.

Each step contains difficulties.

- ▶ The difficulties of Step 1 and Step 2 are specific to our theory $(V^{f\natural})^{\otimes 24}/\text{Co}_1$.
- ▶ The difficulty of Step 3 is more essential and also exists in general orbifolds.

What we want to do

- Step 1. List the conjugacy classes $[(g, h)]$ of commuting pairs.
- Step 2. Compute the twisted partition functions $Z^{(\mathcal{T})h}_g(\tau)$.
- Step 3. Determine **the phases** $\beta(g, h)$ to trivialize the anomalous phases.

(Example) eight real chiral fermions $\psi^{\otimes 8} / \mathbb{Z}_2$ symmetry

The anomaly of one real chiral fermion is the generator of $SH(\mathbb{Z}_2) \cong \mathbb{Z}_8$.

$$\begin{aligned} Z^{(\psi^{\otimes 8}/\mathbb{Z}_2)}(\tau) &= \frac{1}{2} \sum_{g,h \in \mathbb{Z}_2} \beta(g, h) Z^{(\psi^{\otimes 8})h}_g(\tau) \\ &= \frac{1}{2\eta(\tau)^4} (\theta_3(\tau)^4 - \theta_4(\tau)^4 - \theta_2(\tau)^4 \pm \theta_1(\tau)^4) \quad (\theta_1(\tau) = 0) \end{aligned}$$

In this case, we can determine all **the phases** only from the modular invariance $Z(\tau + 1) \propto Z(\tau)$, $Z(-\frac{1}{\tau}) \propto Z(\tau)$ on $Z(\tau)$.

In more general orbifolds, determining **the phases** is more difficult.
(In fact, there seems no well-established general method.)

Motivation (Why $(V^{f\natural})^{\otimes 24}/\text{Co}_1$?)

Conjecture (the Stolz–Teichner conjecture)

[Stolz, Teichner 1108.0189]

$$\{2\text{d } \mathcal{N} = (0, 1) \text{ SQFTs of degree } n\}/\sim \cong \text{TMF}_n \quad (n \in \mathbb{Z})$$

"topological modular forms"

- $\text{SQFT}_n \xrightarrow{\sim} \text{TMF}_n \rightarrow \{\text{modular forms of weight } \frac{n}{2} \text{ } \mathbb{Z}\text{-coefficient weakly holomorphic}\}$

$$\begin{array}{ccc} \mathcal{T} & \xrightarrow{\Psi} & \text{elliptic genus } \eta(\tau)^n Z^{(\mathcal{T})}(\tau) \\ & \longleftarrow & \\ & & Z^{(\mathcal{T})}(\tau) = \text{Tr}_{\mathcal{H}_{\text{RR}}^{(\mathcal{T})}} [(-1)^{F+\tilde{F}} q^{L_0 - \frac{c_L}{24}} \bar{q}^{\tilde{L}_0 - \frac{c_R}{24}}] \quad q = e^{2\pi i \tau} \end{array}$$

- n specifies the gravitational anomaly of SQFT.
For an SCFT of central charge (c_L, c_R) , $n = 2(c_R - c_L)$.

Assuming this conjecture, we can extract nontrivial statements on the space SQFT_\bullet of SQFTs, by translating the properties of TMF_\bullet . Conversely, verifying such statements on the SQFT_\bullet side serves as a test for the Stolz–Teichner conjecture.

Motivation (Why $(V^{f\natural})^{\otimes 24}/\text{Co}_1$?)

For example, consider translating the following property of TMF_\bullet :

Fact (576-periodicity of TMF_\bullet)

There exists a *periodicity element* $\textcolor{violet}{X} \in \text{TMF}_{-24^2 = -576}$ such that

$$\textcolor{violet}{X} \cdot : \text{TMF}_n \xrightarrow{\sim} \text{TMF}_{n-576}.$$

If we assume the Stolz–Teichner conjecture, then the existence of the periodicity element $\textcolor{violet}{X}$ translates to the existence of

an $\mathcal{N} = (0, 1)$ SQFT \mathcal{T} of degree $n = -576$

with the elliptic genus (the Witten index) $Z^{(\mathcal{T})}(\tau) = 1$.

In particular, if we have

an $\mathcal{N} = 1$ $c = 288$ chiral SCFT \mathcal{T}

with the elliptic genus (the Witten index) $Z^{(\mathcal{T})}(\tau) = 1$,

then we only have to put it to the left-moving part ($n = 2(c_R - c_L)$).
(The supersymmetry $\mathcal{N} = 1$ is imposed so that $Z^{(\mathcal{T})}(\tau)$ is a constant.)

Motivation (Why $(V^{f\sharp})^{\otimes 24}/\text{Co}_1$?)

One candidate of

$\mathcal{N} = 1$ $c = 288$ chiral SCFT \mathcal{T} with the Witten index $Z^{(\mathcal{T})}(\tau) = 1$

is proposed in [Albert, Kaidi, Lin 2210.14923]. It is constructed from...

The Conway moonshine module (Duncan's module) $V^{f\sharp}$

- ▶ an $\mathcal{N} = 1$ chiral fermionic SCFT of $c = 12$.
(a \mathbb{Z}_2 -orbifold of 24 free real chiral fermions)
- ▶ has a Conway group Co_1 symmetry.

[Duncan math/0502267]

[Duncan, Mack-Crane 1409.3829]

Such a big symmetry ($|\text{Co}_1| \sim 4.2 \times 10^{18}$) is desirable as follows.
The Witten index counts the number of Ramond vacuum states.
Theory with $c = 288$ is relatively “big”.

(e.g. The Witten index of $(V^{f\sharp})^{\otimes 24}$ is $24^{24} \sim 1.3 \times 10^{33}$.)

Orbifold by a symmetry can reduce the number of states.

- ▶ The anomaly of the Co_1 symmetry corresponds to the generator of $SH^3(\text{Co}_1) \cong \mathbb{Z}_{24}$. [Johnson-Freyd 1707.08388]

→ $\mathcal{T} = (V^{f\sharp})^{\otimes 24}/\text{Co}_1$?

Motivation (Why $(V^{f\natural})^{\otimes 24}/\text{Co}_1$?)

So, we want to compute the Witten index (the partition function)

$$Z^{((V^{f\natural})^{\otimes 24}/\text{Co}_1)}(\tau).$$

In this talk, we provide partial results (Step 1,2: done, Step 3: ongoing), and a conjectural value of this Witten index (> 1).

If $Z^{((V^{f\natural})^{\otimes 24}/\text{Co}_1)}(\tau)$ is still greater than 1, then we consider to take further orbifold as

$$(V^{f\natural})^{\otimes 24}/(\text{Co}_1 \times A_{24}).$$

($\text{Co}_1 \times S_{24}$ is considered to be anomalous.) [Albert, Kaidi, Lin 2210.14923]

Review of orbifolds (Construction)

\mathcal{T} : a 2d CFT periodic in spatial and temporal directions with non-anomalous finite group symmetry G

Construction of the **orbifold** theory \mathcal{T}/G :

1. Add all the **twisted Hilbert spaces** \mathcal{H}_g of the states with g -twisted boundary condition in spatial direction ($g \in G$)

$$\mathcal{H}_{\text{tot}} := \bigoplus_{g \in G} \mathcal{H}_g.$$

2. Project \mathcal{H}_{tot} onto the **G -invariant subspace**

$$\mathcal{H}^{(\mathcal{T}/G)} := \left(\frac{1}{|G|} \sum_{h \in G} U_h \right) \mathcal{H}_{\text{tot}},$$

where $U_h : \mathcal{H}_{\text{tot}} \rightarrow \mathcal{H}_{\text{tot}}$ is the unitary action of $h \in G$.

This $\mathcal{H}^{(\mathcal{T}/G)}$ is the Hilbert space of the orbifold \mathcal{T}/G .

Review of orbifolds (Partition function)

Since the Hilbert space is

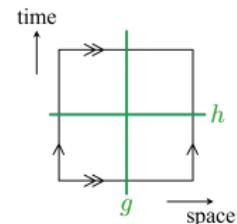
$$\mathcal{H}^{(\mathcal{T}/G)} = \left(\frac{1}{|G|} \sum_{h \in G} U_h \right) \bigoplus_{g \in G} \mathcal{H}_g,$$

the **partition function** of the orbifold \mathcal{T}/G is

$$Z^{(\mathcal{T}/G)}(\tau) = \frac{1}{|G|} \sum_{g,h \in G} Z_0^{(\mathcal{T})h}_g(\tau),$$

where $Z_0^{(\mathcal{T})h}_g(\tau)$ is the **twisted partition function**

$$Z_0^{(\mathcal{T})h}_g(\tau) := \text{Tr}_{\mathcal{H}_g} [U_h q^{L_0 - \frac{c_L}{24}} \bar{q}^{\tilde{L}_0 - \frac{c_R}{24}}] \quad (gh = hg),$$



with the effect of anomalous phases already trivialized (next slide).

Review of orbifolds (Anomaly)

Anomaly is an obstacle to the orbifold construction.

For simplicity, in a 2d bosonic theory, the anomaly of a G -symmetry is described by the anomaly 3-cocycle $\alpha : G \times G \times G \rightarrow \text{U}(1)$.

- ▶ $U_h U_{h'} = (\text{phase from } \alpha) U_{hh'}$ on twisted Hilbert spaces \mathcal{H}_g .
→ $P := \frac{1}{|G|} \sum_{h \in G} U_h$ is not a projection to G -inv space ($U_g P \neq P$).
- ▶ $Z^{(\mathcal{T})h}_g(\tau + 1) = (\text{phase from } \alpha) Z^{(\mathcal{T})gh}_g(\tau)$,
 $Z^{(\mathcal{T})h}_g(-\frac{1}{\tau}) = (\text{phase from } \alpha) Z^{(\mathcal{T})g^{-1}h}_h(\tau)$.
→ The orbifold partition function $Z^{(\mathcal{T}/G)}(\tau)$ is not modular invariant.

If the cohomology class $[\alpha] \in H^3(G; \text{U}(1))$ is trivial,

then using a 2-cochain γ such that $\alpha = d\gamma$,

we can redefine U_g and $Z^{(\mathcal{T})h}_g(\tau)$ so that all the (phases from α) vanish.

So the G -symmetry is said to be non-anomalous.

Notation:

$$\begin{aligned} Z_0^{(\mathcal{T})h}_g(\tau) &:= \beta(g, h) Z^{(\mathcal{T})h}_g(\tau) \\ &:= (\text{phase by } \gamma) Z^{(\mathcal{T})h}_g(\tau). \end{aligned}$$

Review of orbifolds (Partition function)

Properties of the twisted partition functions $Z_0^{(\mathcal{T})h}_g(\tau)$:

- $Z_0^{(\mathcal{T})h}_g(\tau) = 0$ for non-commuting g, h (because $U_h : \mathcal{H}_g \rightarrow \mathcal{H}_{hgh^{-1}}$).
- $Z_0^{(\mathcal{T})h}_g(\tau) = Z_0^{(\mathcal{T})khk^{-1}}_{kgk^{-1}}(\tau)$.

→ We only have to compute the twisted partition functions for each **conjugacy class of commuting pairs**

$$\{(g, h) \in G \times G \mid gh = hg\} / (g, h) \sim (kgk^{-1}, khk^{-1}).$$

In summary, in order to compute the orbifold partition function

$$Z^{(\mathcal{T}/G)}(\tau) = \sum_{[(g,h)] \in \{gh=hg\}/\sim} \frac{|[(g,h)]|}{|G|} \beta(g, h) Z_0^{(\mathcal{T})h}_g(\tau),$$

Step 1. List the **conjugacy classes of commuting pairs**.

Step 2. Compute the twisted partition functions $Z_0^{(\mathcal{T})h}_g(\tau)$.

Step 3. Determine **the phases $\beta(g, h)$** to trivialize the anomalous phases.

Let us carry out these steps for $(V^{\text{frob}})^{\otimes 24}/\text{Co}_1$.

Step 1. List the conjugacy classes of commuting pairs

We would like to list all the conjugacy classes of commuting pairs

$$\{(g, h) \in \text{Co}_1 \times \text{Co}_1 \mid gh = hg\} / (g, h) \sim (kgk^{-1}, khk^{-1}).$$

Co_1 is too big and complicated to deal with by hand.

An open-source system **GAP** is good at handling **permutation groups**.

So, we represent Co_1 as a **permutation group**, and pass it to **GAP**.

(Details:

$\text{Co}_0 = \mathbb{Z}_2 \cdot \text{Co}_1$ is the automorphism group of the Leech lattice $\Lambda_{24} \subset \mathbb{R}^{24}$.

→ An element of Co_0 can be represented as a **permutation** of the 196560 shortest vectors of the Leech lattice Λ_{24} .

→ An element of Co_1 is then a **permutation** of the $\frac{196560}{2} = 98280$ vectors of $\Lambda_{24}/\{\pm 1\}$.

From the generators of Co_1 represented as **permutations**,

GAP can list a representative of each conjugacy class of commuting pairs.

We then convert the permutations into matrices $\in \text{SO}(24)$.)

Step 2. Compute the twisted partition functions

We first have to understand the structure of Duncan's module.

Duncan's module $V^{f\sharp}$ is constructed as a \mathbb{Z}_2 -orbifold of 24 free real chiral fermions $\psi^{\otimes 24}$. The details are as follows.

The theory of 24 free real chiral fermions has $\text{Spin}(24)$ symmetry. The center of $\text{Spin}(24)$ is $\mathbb{Z}_2 \times \mathbb{Z}_2 = \langle -\hat{1}_{\text{SO}(24)} \rangle \times \langle -1_{\text{Spin}(24)} \rangle$.

$$\begin{array}{ccc} & \text{Spin}(24) & \\ & \swarrow / \langle -\hat{1}_{\text{SO}(24)} \rangle & \searrow / \langle -1_{\text{Spin}(24)} \rangle \\ \text{SemiSpin}(24) & & \text{SO}(24) \end{array}$$

The sectors of this fermionic theory are

		$-1_{\text{Spin}(24)}$ even	$-1_{\text{Spin}(24)}$ odd	
$-\hat{1}_{\text{SO}(24)}$ even	A_0^0	A_1^0	$\rightarrow (V^{f\sharp})_{\text{NS}} \curvearrowright \text{SemiSpin}(24)$	
$-\hat{1}_{\text{SO}(24)}$ odd	A_0^1	A_1^1	$\rightarrow (V^{f\sharp})_{\text{R}}$	
	\downarrow	\downarrow		
	$(\psi^{\otimes 24})_{\text{NS}}$	$(\psi^{\otimes 24})_{\text{R}}$		
	\curvearrowleft	\curvearrowleft		
	$\text{SO}(24)$			

Step 2. Compute the twisted partition functions

It is known that $\text{Co}_0 = \text{Aut}(\Lambda_{24}) \subset \text{SO}(24)$ lifts to $\text{Co}_0 \subset \text{Spin}(24)$, and then it projects onto $\text{Co}_1 = \text{Co}_0/\mathbb{Z}_2 \subset \text{SemiSpin}(24)$.

$$\begin{array}{ccc}
 & \text{Co}_0 \subset \text{Spin}(24) & \\
 \swarrow & \nwarrow & \\
 \text{SemiSpin}(24) \supset \text{Co}_1 & & \text{Co}_0 \subset \text{SO}(24)
 \end{array}$$

In the conformal-weight- $\frac{3}{2}$ subspace of the NS sector $(V^{f\sharp})_{\text{NS}}$, there exists one-dimensional invariant subspace under the action of $\text{Co}_1 \subset \text{SemiSpin}(24)$, and it is the $\mathcal{N} = 1$ supercurrent.

	$-1_{\text{Spin}(24)}$ even	$-1_{\text{Spin}(24)}$ odd	
$-\hat{1}_{\text{SO}(24)}$ even		$\text{Co}_1\text{-inv supercurrent}$	$\rightarrow (V^{f\sharp})_{\text{NS}}$
$-\hat{1}_{\text{SO}(24)}$ odd			$\rightarrow (V^{f\sharp})_{\text{R}}$
	\downarrow $(\psi^{\otimes 24})_{\text{NS}}$	\downarrow $(\psi^{\otimes 24})_{\text{R}}$	

Step 2. Compute the twisted partition functions

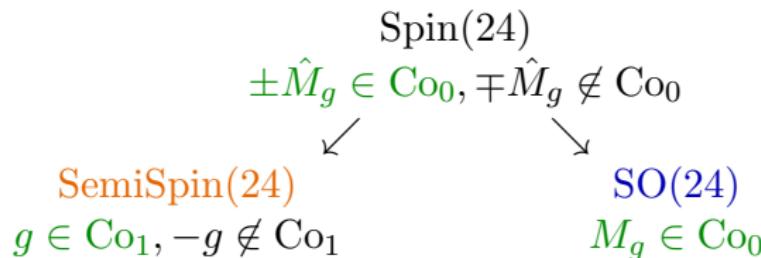
Now, we would like to calculate the twisted partition functions of $V^{f\#}$.

We already know

- ▶ the matrix form $M_g \in \mathrm{SO}(24)$ of $g \in \mathrm{Co}_1$ (Step 1).
- ▶ the formula of twisted partition function of $\psi^{\otimes 24}$ twisted by $\mathrm{SO}(24)$.

As the last ingredient, we have to detect

which of the two lifts \hat{M}_g or $-\hat{M}_g \in \mathrm{Spin}(24)$ of $M_g \in \mathrm{SO}(24)$ is in the preimage of $\mathrm{Co}_1 \subset \mathrm{SemiSpin}(24)$.



(We block-diagonalize $M_g \in \mathrm{SO}(24)$ into 12 two-dimensional rotations by angles $\theta_1, \dots, \theta_{12}$. We have to detect θ_i or $\theta_i + 2\pi$ for one i .)

Step 2. Compute the twisted partition functions

To detect which lift is correct, we used the fact that the correct lift $\pm \hat{M}_g \in \text{Co}_0$ preserves the **supercurrent**, whereas the wrong one reverses the sign of the **supercurrent**.

(Details:

1. Represent $\hat{M}_g \in \text{Spin}(24)$ as a 2^{11} -dim matrix $\hat{M}_g^{2^{11}}$ on the conformal-weight- $\frac{3}{2}$ subspace of $(V^{f\natural})_{\text{NS}}$ (the positive chiral spinor representation of $\text{Spin}(24)$).
2. Determine the **supercurrent** G in the conformal-weight- $\frac{3}{2}$ subspace as a basis of the 1-dim intersection of the invariant subspaces under the generators $\hat{A}^{2^{11}}$ and $\hat{B}^{2^{11}}$ of Co_0 .
3. See if $\pm \hat{M}_g^{2^{11}} G = \pm G$ or $\pm \hat{M}_g^{2^{11}} G = \mp G$.)

We succeeded in computing the twisted partition functions $Z^{(V^{f\natural})_g^h}(\tau)$ of Duncan's module $V^{f\natural}$, up to the anomalous phases (\rightarrow Step 3).

Step 3. Determine the phases to trivialize the anomaly

The cohomology class of the anomaly of the Co_1 symmetry of $V^{f\natural}$ is known to be the generator of $SH(\text{Co}_1) \cong \mathbb{Z}_{24}$. [Johnson-Freyd 1707.08388]
"supercohomology"

Therefore, we can construct the orbifold $(V^{f\natural})^{\otimes 24}/\text{Co}_1$.

However, we know neither the actual values of the **anomaly 3-cocycle** $\alpha : \text{Co}_1 \times \text{Co}_1 \times \text{Co}_1 \rightarrow \text{U}(1)$, nor the phases β of

$$\begin{aligned} Z_0^{((V^{f\natural})^{\otimes 24})h}_g(\tau) &= \beta(g, h) \left(Z^{(V^{f\natural})h}_g(\tau) \right)^{24} \\ &=: \tilde{\beta}(g, h) \left| Z^{(V^{f\natural})h}_g \right|^{24} \end{aligned}$$

to trivialize the phases from α .

(There seems no well-established way of calculating them.)

So we attempt to determine the phases $\tilde{\beta}(g, h)$ from some consistency conditions, that is, properties which the twisted partition functions $Z_0^{(T)h}_g(\tau)$ must satisfy.

Step 3. Determine the phases to trivialize the anomaly

There are 7578 conjugacy classes $[(g, h)]$ of commuting pairs, and for each of them, we need to determine $\tilde{\beta}(g, h)$.

- modular transformation (SL(2, \mathbb{Z}) transformation):

$$Z_0^{(\mathcal{T})h}_g(\tau + 1) = Z_0^{(\mathcal{T})gh}_g(\tau), \quad Z_0^{(\mathcal{T})h}_g(-\frac{1}{\tau}) = Z_0^{(\mathcal{T})g^{-1}h}_0(\tau).$$

- The number of degrees of freedom of $\tilde{\beta}(g, h)$ reduces to 445.
- GL(2, \mathbb{Z}) transformation:

$$Z_0^{(\mathcal{T})h}_g(-\bar{\tau}) = \left[Z_0^{(\mathcal{T})h^{-1}}_g(\tau) \right]^*.$$

- Among 445 $\tilde{\beta}(g, h)$, 427 are $\tilde{\beta}(g, h) \in \{+1, -1\}$, and the remaining $\frac{18}{2} = 9$ pairs are complex conjugates of each other.

Step 3. Determine the phases to trivialize the anomaly

- Each twisted Hilbert space \mathcal{H}_g is a representation of the centralizer $C_g := \{h \in G \mid gh = hg\}$.

So, the twisted partition function $Z_0^{(\mathcal{T})h}_g(\tau)$ must be a character of $h \in C_g$.

From the orthogonality of the irreducible characters, the multiplicity of the a -th irreducible representation χ_a of C_g is

$$N(g, a) := \frac{1}{|C_g|} \sum_{h \in C_g} \chi_a(h)^* Z_0^{(\mathcal{T})h}_g(\tau).$$

All the multiplicities $N(g, a)$ must be integers.

These integrality conditions can determine some of the phases $\tilde{\beta}(g, h)$, but not all.

As a nontrivial observation, a simple choice $\tilde{\beta}(g, h) = +1$ for any $g, h \in \text{Co}_1$ satisfies all the integrality conditions!

Step 3. Determine the phases to trivialize the anomaly

Conjecture

The choice $\tilde{\beta}(g, h) = +1$ for any $g, h \in \text{Co}_1$ gives the correct value of the orbifold partition function $Z^{((V^{f\natural})^{\otimes 24}/\text{Co}_1)}(\tau)$.

If this is the case, then the orbifold partition function (the Witten index) is $Z^{((V^{f\natural})^{\otimes 24}/\text{Co}_1)}(\tau) = 665834752697050$.

Future directions

- ▶ Determine the phases $\tilde{\beta}(g, h)$ and the Witten index $Z^{((V^{f\natural})^{\otimes 24}/\text{Co}_1)}(\tau)$.
- ▶ Compute $Z^{((V^{f\natural})^{\otimes 24}/(\text{Co}_1 \times A_{24}))}(\tau)$. Is it 1?

Again, we have to determine the phases to trivialize the anomaly.

These phases are common to $(V^{f\natural})^{\otimes 24}/\text{Co}_1$ and $(V^{f\natural})^{\otimes 24}/\text{Co}_1 \times A_{24}$, so the integrality conditions on $(V^{f\natural})^{\otimes 24}/\text{Co}_1 \times A_{24}$ might give us additional information on the phases.

- ▶ More fundamental approach to determining such phases?
(cf. In the case of a $U(1)$ symmetry or its subgroup $\mathbb{Z}_n \subset U(1)$, we can calculate values of the anomaly 3-cocycle $\alpha(g, h, k)$.)

[Okada, Shimamura, Tachikawa, Yi 2509.02989]

(Backup) Details of anomaly 3-cocycle

The **anomaly 3-cocycle** $\alpha : G \times G \times G \rightarrow \text{U}(1)$ appears in the associativity of the lines implementing the G -action:

$$\begin{array}{ccc} \text{Diagram: } & & \text{Diagram: } \\ \begin{array}{c} \text{Two green lines } g \text{ and } h \text{ meet at a dot labeled } u_{g,h} \\ \text{A green line } k \text{ meets the line } u_{g,h} \text{ at a dot labeled } u_{gh,k} \end{array} & = & \begin{array}{c} \text{Two green lines } g \text{ and } h \text{ meet at a dot labeled } u_{g,hk} \\ \text{A green line } k \text{ meets the line } u_{g,hk} \text{ at a dot labeled } u_{h,k} \end{array} \end{array}$$

where $u_{g,h} : \mathcal{H}_{g,h} \rightarrow \mathcal{H}_{gh}$ is the **fusion operator**.

We define the action U_h of $h \in G$ on the twisted Hilbert space \mathcal{H}_g and the twisted partition function $Z_g^h(\tau)$ as

$$U_h := \begin{array}{c} \text{Diagram: } \\ \text{Two green lines } h \text{ and } g \text{ meet at a dot labeled } u_{g,h}^{-1} \\ \text{A green line } h \text{ meets the line } u_{g,h}^{-1} \text{ at a dot labeled } u_{h,g} \\ \text{A blue arrow labeled } U_h \text{ points from the line } h \text{ to the line } u_{h,g} \end{array} , \quad Z_g^h(\tau) := Z \left(\begin{array}{c} \text{Diagram: } \\ \text{Two green lines } h \text{ and } g \text{ meet at a dot labeled } u_{g,h}^{-1} \\ \text{A green line } h \text{ meets the line } u_{g,h}^{-1} \text{ at a dot labeled } u_{h,g} \end{array} \right).$$

(Backup) Details of anomaly 3-cocycle

We can see that **the anomaly 3-cocycle α** is an obstacle to the orbifold; for example, **phases from α** appear in $U_h U_{h'} = (\text{phase from } \alpha) U_{hh'}$, and the modular transformations of $Z_g^h(\tau)$.

(Example) modular S transformation:

$$Z_g^h(\tau) = Z \left(\begin{array}{c} g \\ \text{---} \\ h \rightarrow \leftarrow h \\ \text{---} \\ g \end{array} \right) \xrightarrow{S} Z \left(\begin{array}{c} h \\ \text{---} \\ g \leftarrow \rightarrow g \\ \text{---} \\ h \end{array} \right)$$

||

$$(\text{phase from } \alpha) Z \left(\begin{array}{c} h \\ \text{---} \\ g \leftarrow \rightarrow g \\ \text{---} \\ h \end{array} \right) = (\text{phase from } \alpha) Z_h^{g^{-1}}(\tau).$$

(Backup) Details of anomaly 3-cocycle

If the cohomology class $[\alpha] \in H^3(G; \text{U}(1))$ is trivial, then using the 2-cochain γ such that $\alpha = d\gamma$, we define a new **fusion operator** $\tilde{u}_{g,h} := \gamma(g, h)u_{g,h}$.

Then the phases $\alpha(g, h, k)$ do not appear in the associativity of the new **fusion operators** $\tilde{u}_{g,h}$

$$\begin{array}{c} \text{---} \\ \text{---} \\ \text{---} \end{array} \quad \tilde{u}_{g,h} \quad \begin{array}{c} \text{---} \\ \text{---} \\ \text{---} \end{array} \quad \tilde{u}_{gh,k} \quad = \quad \begin{array}{c} \text{---} \\ \text{---} \\ \text{---} \end{array} \quad \tilde{u}_{g,hk} \quad \begin{array}{c} \text{---} \\ \text{---} \\ \text{---} \end{array} \quad \tilde{u}_{h,k} \quad .$$

So \tilde{U}_g and $\tilde{Z}_g^h(\tau)$ defined with the new **fusion operators** $\tilde{u}_{g,h}$ also do not suffer from the **phases from α** .

Recalling $Z_g^h(\tau) := Z \left(\begin{array}{c} \text{---} \\ \text{---} \\ \text{---} \\ \text{---} \\ \text{---} \end{array} \right)$, the new twisted partition function is

$$\tilde{Z}_g^h(\tau) = \frac{\gamma(h, g)}{\gamma(g, h)} Z_g^h(\tau).$$

$(Z_0^{(\mathcal{T})h}_g(\tau) = \beta(g, h) Z_g^{(\mathcal{T})h}(\tau)$ in our slides' notation.)

(Backup) Step 2. Detailed description of lifts

The center of $\text{Spin}(24)$ is $\mathbb{Z}_2 \times \mathbb{Z}_2 = \langle -\hat{1}_{\text{SO}(24)} \rangle \times \langle -1_{\text{Spin}(24)} \rangle$.

$$\begin{array}{ccc}
 & \text{Spin}(24) & \\
 & \swarrow / \langle -\hat{1}_{\text{SO}(24)} \rangle & \searrow / \langle -1_{\text{Spin}(24)} \rangle \\
 \text{SemiSpin}(24) & & \text{SO}(24)
 \end{array}$$

The matrix form of $g \in \text{Co}_1 = \text{Co}_0 / \mathbb{Z}_2$ is $\pm M_g \in \text{SO}(24)$.

When we fix one lift $\hat{M}_g \in \text{Spin}(24)$ of $M_g \in \text{SO}(24)$,

$$\begin{array}{c}
 \text{Spin}(24) \\
 \hline
 \begin{array}{c|c}
 \hat{M}_g \in \text{Co}_0 & (-1_{\text{Spin}(24)} \cdot \hat{M}_g) \notin \text{Co}_0 \\
 \hline
 -\hat{1}_{\text{SO}(24)} \cdot \hat{M}_g \in \text{Co}_0 & -\hat{1}_{\text{SO}(24)} \cdot (-1_{\text{Spin}(24)} \cdot \hat{M}_g) \notin \text{Co}_0
 \end{array}
 \end{array}$$

or

$$\begin{array}{c}
 \begin{array}{c|c}
 (-1_{\text{Spin}(24)} \cdot \hat{M}_g) \in \text{Co}_0 & \hat{M}_g \notin \text{Co}_0 \\
 \hline
 -\hat{1}_{\text{SO}(24)} \cdot (-1_{\text{Spin}(24)} \cdot \hat{M}_g) \in \text{Co}_0 & -\hat{1}_{\text{SO}(24)} \cdot \hat{M}_g \notin \text{Co}_0
 \end{array}
 \end{array}$$

\swarrow
 $\text{SemiSpin}(24)$

\searrow
 $\text{SO}(24)$

$$\begin{array}{c}
 g \in \text{Co}_1 \mid -g \notin \text{Co}_1 \\
 \hline
 \begin{array}{c}
 M_g \in \text{Co}_0 \\
 -M_g \in \text{Co}_0
 \end{array}
 \end{array}$$

(Backup) Step 2. Twisted partition function of fermions

If M_g and $M_h \in \mathrm{SO}(24)$ commute, then we can simultaneously block-diagonalize them within $\mathrm{SO}(24)$ in the form of

$$\begin{pmatrix} \cos 2\pi\lambda_1 & -\sin 2\pi\lambda_1 & & & & \\ \sin 2\pi\lambda_1 & \cos 2\pi\lambda_1 & & & & \\ & & \ddots & & & \\ & & & \cos 2\pi\lambda_{12} & -\sin 2\pi\lambda_{12} & \\ & & & \sin 2\pi\lambda_{12} & \cos 2\pi\lambda_{12} & \end{pmatrix}.$$

The twisted partition function $Z^{(\psi^{\otimes 24})} \frac{M_h}{M_g}(\tau)$ of 24 real chiral fermions can be written in terms of the theta function with characteristic $\theta \begin{bmatrix} a \\ b \end{bmatrix}(\tau)$

$$Z^{(\psi^{\otimes 24})} \frac{M_h}{M_g}(\tau) = \prod_{i=1}^{12} \frac{1}{\eta(\tau)} \theta \begin{bmatrix} \lambda_i^{(g)} \\ \lambda_i^{(h)} \end{bmatrix}(\tau).$$

The difference of the two lifts $\pm \hat{M}_g \in \mathrm{Spin}(24)$ can be implemented as the difference of λ_{12} and $\lambda_{12} + 1$.