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What we want to do
(In this talk, we always consider CFTs on 2d torus.)
We want to compute the partition function (the Witten index)

Z((V f♮)⊗24/Co1)(τ)

of a certain orbifold theory.

In general, the orbifold T /G is a G-invariant 2d CFT constructed from
a 2d CFT T with non-anomalous finite group symmetry G,
and its partition function is

Z(T /G)(τ) =
∑

[(g,h)]∈{gh=hg}/∼

|[(g, h)]|
|G|

β(g, h)Z(T )h
g (τ).

Step 1. List the conjugacy classes of commuting pairs
{(g, h) ∈ G×G | gh = hg} / (g, h) ∼ (kgk−1, khk−1).

Step 2. Compute the twisted partition functions Z(T )h
g (τ).

Step 3. Determine the phases β(g, h) to trivialize the anomalous phases.
(Note: more fundamental problem than the discrete torsion.)
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What we want to do

Step 1. List the conjugacy classes [(g, h)] of commuting pairs.
Step 2. Compute the twisted partition functions Z(T )h

g (τ).
Step 3. Determine the phases β(g, h) to trivialize the anomalous phases.

Each step contains difficulties.
▶ The difficulties of Step 1 and Step 2 are specific to our theory

(V f♮)⊗24/Co1.
▶ The difficulty of Step 3 is more essential and also exists in general

orbifolds.
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What we want to do

Step 1. List the conjugacy classes [(g, h)] of commuting pairs.
Step 2. Compute the twisted partition functions Z(T )h

g (τ).
Step 3. Determine the phases β(g, h) to trivialize the anomalous phases.

(Example) eight real chiral fermions ψ⊗8 / Z2 symmetry
The anomaly of one real chiral fermion is the generator of SH(Z2) ∼= Z8.

Z(ψ⊗8/Z2)(τ) =
1

2

∑
g,h∈Z2

β(g, h)Z(ψ⊗8)h
g (τ)

=
1

2η(τ)4
(
θ3(τ)

4 − θ4(τ)
4 − θ2(τ)

4 ± θ1(τ)
4
)

(θ1(τ) = 0)

In this case, we can determine all the phases only from
the modular invariance Z(τ + 1) ∝ Z(τ), Z(− 1

τ ) ∝ Z(τ) on Z(τ).

In more general orbifolds, determining the phases is more difficult.
(In fact, there seems no well-established general method.)
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Motivation (Why (V f♮)⊗24/Co1?)

Conjecture (the Stolz–Teichner conjecture) [Stolz, Teichner 1108.0189]

{2d N = (0, 1) SQFTs of degree n}/∼ ∼= TMFn (n ∈ Z)
"topological modular forms"

▶ SQFTn
∼−→ TMFn → {modular forms of weight n

2
Z-coefficient
weakly holomorphic}

∈ ∈

T 7−−−−−−−−−→ elliptic genus η(τ)nZ(T )(τ)
Z(T )(τ) = TrH(T )

RR̃

[(−1)F+F̃ qL0−
cL
24 q̄L̃0−

cR
24 ] q = e2πiτ

▶ n specifies the gravitational anomaly of SQFT.
For an SCFT of central charge (cL, cR), n = 2(cR − cL).

Assuming this conjecture, we can extract nontrivial statements on
the space SQFT• of SQFTs, by translating the properties of TMF•.
Conversely, verifying such statements on the SQFT• side serves as
a test for the Stolz–Teichner conjecture.
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Motivation (Why (V f♮)⊗24/Co1?)

For example, consider translating the following property of TMF•:

Fact (576-periodicity of TMF•)

There exists a periodicity element X ∈ TMF−242=−576 such that

X· : TMFn
∼−→ TMFn−576.

If we assume the Stolz–Teichner conjecture, then the existence of the
periodicity element X translates to the existence of

an N = (0, 1) SQFT T of degree n = −576

with the elliptic genus (the Witten index) Z(T )(τ) = 1.

In particular, if we have

an N = 1 c = 288 chiral SCFT T
with the elliptic genus (the Witten index) Z(T )(τ) = 1,

then we only have to put it to the left-moving part (n = 2(cR − cL)).
(The supersymmetry N = 1 is imposed so that Z(T )(τ) is a constant.)
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Motivation (Why (V f♮)⊗24/Co1?)

One candidate of

N = 1 c = 288 chiral SCFT T with the Witten index Z(T )(τ) = 1

is proposed in [Albert, Kaidi, Lin 2210.14923]. It is constructed from...

[Duncan math/0502267]
[Duncan, Mack-Crane 1409.3829]

The Conway moonshine module (Duncan’s module) V f♮

▶ an N = 1 chiral fermionic SCFT of c = 12.
(a Z2-orbifold of 24 free real chiral fermions)

▶ has a Conway group Co1 symmetry.
Such a big symmetry (|Co1| ∼ 4.2× 1018) is desirable as follows.
The Witten index counts the number of Ramond vacuum states.
Theory with c = 288 is relatively “big”.
(e.g. The Witten index of (V f♮)⊗24 is 2424 ∼ 1.3× 1033.)
Orbifold by a symmetry can reduce the number of states.

▶ The anomaly of the Co1 symmetry corresponds to
the generator of SH3(Co1) ∼= Z24. [Johnson-Freyd 1707.08388]

→ T = (V f♮)⊗24/Co1 ?
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Motivation (Why (V f♮)⊗24/Co1?)

So, we want to compute the Witten index (the partition function)

Z((V f♮)⊗24/Co1)(τ).

In this talk, we provide partial results (Step 1,2: done, Step 3: ongoing),
and a conjectural value of this Witten index (> 1).

If Z((V f♮)⊗24/Co1)(τ) is still greater than 1,
then we consider to take further orbifold as

(V f♮)⊗24/(Co1 ×A24).

(Co1 × S24 is considered to be anomalous.) [Albert, Kaidi, Lin 2210.14923]

9 / 23



Review of orbifolds (Construction)

T : a 2d CFT periodic in spatial and temporal directions
with non-anomalous finite group symmetry G

Construction of the orbifold theory T /G:
1. Add all the twisted Hilbert spaces Hg of the states

with g-twisted boundary condition in spatial direction (g ∈ G)

Htot :=
⊕
g∈G

Hg.

2. Project Htot onto the G-invariant subspace

H(T /G) :=

(
1

|G|
∑
h∈G

Uh

)
Htot,

where Uh : Htot → Htot is the unitary action of h ∈ G.
This H(T /G) is the Hilbert space of the orbifold T /G.
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Review of orbifolds (Partition function)

Since the Hilbert space is

H(T /G) =

(
1

|G|
∑
h∈G

Uh

)⊕
g∈G

Hg,

the partition function of the orbifold T /G is

Z(T /G)(τ) =
1

|G|
∑
g,h∈G

Z
(T )
0

h
g (τ),

where Z(T )
0

h
g (τ) is the twisted partition function

Z
(T )
0

h
g (τ) := TrHg [Uhq

L0−
cL
24 q̄L̃0−

cR
24 ] (gh = hg),

with the effect of anomalous phases already trivialized (next slide).
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Review of orbifolds (Anomaly)

Anomaly is an obstacle to the orbifold construction.
For simplicity, in a 2d bosonic theory, the anomaly of a G-symmetry is
described by the anomaly 3-cocycle α : G×G×G→ U(1).
▶ UhUh′ = (phase from α)Uhh′ on twisted Hilbert spaces Hg.

→ P := 1
|G|
∑

h∈G Uh is not a projection to G-inv space (UgP ̸= P ).

▶ Z(T )h
g (τ + 1) = (phase from α)Z(T )gh

g (τ),

Z(T )h
g (− 1

τ ) = (phase from α)Z(T )g
−1

h (τ).
→ The orbifold partition function Z(T /G)(τ) is not modular invariant.

If the cohomology class [α] ∈ H3(G; U(1)) is trivial,
then using a 2-cochain γ such that α = dγ,
we can redefine Ug and Z(T )h

g (τ) so that all the (phases from α) vanish.
So the G-symmetry is said to be non-anomalous.
Notation:

Z
(T )
0

h
g (τ) := β(g, h)Z(T )h

g (τ)

:= (phase by γ)Z(T )h
g (τ).
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Review of orbifolds (Partition function)

Properties of the twisted partition functions Z(T )
0

h
g (τ) :

▶ Z
(T )
0

h
g (τ) = 0 for non-commuting g, h (because Uh : Hg → Hhgh−1).

▶ Z
(T )
0

h
g (τ) = Z

(T )
0

khk−1

kgk−1 (τ).

→ We only have to compute the twisted partition functions for
each conjugacy class of commuting pairs

{(g, h) ∈ G×G | gh = hg} / (g, h) ∼ (kgk−1, khk−1).

In summary, in order to compute the orbifold partition function

Z(T /G)(τ) =
∑

[(g,h)]∈{gh=hg}/∼

|[(g, h)]|
|G|

β(g, h)Z(T )h
g (τ),

Step 1. List the conjugacy classes of commuting pairs.
Step 2. Compute the twisted partition functions Z(T )h

g (τ).
Step 3. Determine the phases β(g, h) to trivialize the anomalous phases.
Let us carry out these steps for (V f♮)⊗24/Co1.
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Step 1. List the conjugacy classes of commuting pairs

We would like to list all the conjugacy classes of commuting pairs

{(g, h) ∈ Co1 × Co1 | gh = hg} / (g, h) ∼ (kgk−1, khk−1).

Co1 is too big and complicated to deal with by hand.
An open-source system GAP is good at handling permutation groups.
So, we represent Co1 as a permutation group, and pass it to GAP.

(Details:
Co0 = Z2.Co1 is the automorphism group of the Leech lattice Λ24 ⊂ R24.
→ An element of Co0 can be represented as a permutation of

the 196560 shortest vectors of the Leech lattice Λ24.
→ An element of Co1 is then a permutation of

the 196560
2 = 98280 vectors of Λ24/{±1}.

From the generators of Co1 represented as permutations,
GAP can list a representative of each conjugacy class of commuting pairs.
We then convert the permutations into matrices ∈ SO(24).)
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Step 2. Compute the twisted partition functions
We first have to understand the structure of Duncan’s module.
Duncan’s module V f♮ is constructed as a Z2-orbifold of
24 free real chiral fermions ψ⊗24. The details are as follows.

The theory of 24 free real chiral fermions has Spin(24) symmetry.
The center of Spin(24) is Z2 × Z2 = ⟨−1̂SO(24)⟩ × ⟨−1Spin(24)⟩.

Spin(24)
↙/⟨−1̂SO(24)⟩ ↘ /⟨−1Spin(24)⟩

SemiSpin(24) SO(24)

The sectors of this fermionic theory are
−1Spin(24) even −1Spin(24) odd

−1̂SO(24) even A0
0 A0

1 → (V f♮)NS ↶ SemiSpin(24)

−1̂SO(24) odd A1
0 A1

1 → (V f♮)R
↓ ↓

(ψ⊗24)NS (ψ⊗24)R↶

SO(24)
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Step 2. Compute the twisted partition functions
It is known that Co0 = Aut(Λ24) ⊂ SO(24) lifts to Co0 ⊂ Spin(24),
and then it projects onto Co1 = Co0/Z2 ⊂ SemiSpin(24).

Co0 ⊂ Spin(24)
↙ ∼=

SemiSpin(24) ⊃ Co1 Co0 ⊂ SO(24)

In the conformal-weight-32 subspace of the NS sector (V f♮)NS,
there exists one-dimensional invariant subspace under the action of
Co1 ⊂ SemiSpin(24), and it is the N = 1 supercurrent.

−1Spin(24) even −1Spin(24) odd
−1̂SO(24) even Co1-inv supercurrent → (V f♮)NS

−1̂SO(24) odd → (V f♮)R
↓ ↓

(ψ⊗24)NS (ψ⊗24)R
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Step 2. Compute the twisted partition functions
Now, we would like to calculate the twisted partition functions of V f♮.
We already know
▶ the matrix form Mg ∈ SO(24) of g ∈ Co1 (Step 1).
▶ the formula of twisted partition function of ψ⊗24 twisted by SO(24).
As the last ingredient, we have to detect
which of the two lifts M̂g or −M̂g ∈ Spin(24) of Mg ∈ SO(24)
is in the preimage of Co1 ⊂ SemiSpin(24).

Spin(24)

±M̂g ∈ Co0,∓M̂g ̸∈ Co0
↙ ↘

SemiSpin(24) SO(24)
g ∈ Co1,−g ̸∈ Co1 Mg ∈ Co0

(We block-diagonalize Mg ∈ SO(24) into 12 two-dimensional rotations
by angles θ1, . . . , θ12. We have to detect θi or θi + 2π for one i.)
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Step 2. Compute the twisted partition functions

To detect which lift is correct, we used the fact that
the correct lift ±M̂g ∈ Co0 preserves the supercurrent,
whereas the wrong one reverses the sign of the supercurrent.

(Details:
1. Represent M̂g ∈ Spin(24) as a 211-dim matrix M̂211

g on
the conformal-weight-32 subspace of (V f♮)NS

(the positive chiral spinor representation of Spin(24)).
2. Determine the supercurrent G in the conformal-weight-32 subspace

as a basis of the 1-dim intersection of the invariant subspaces under
the generators Â211 and B̂211 of Co0.

3. See if ±M̂211
g G = ±G or ±M̂211

g G = ∓G. )

We succeeded in computing the twisted partition functions Z(V f♮)h
g (τ)

of Duncan’s module V f♮, up to the anomalous phases (→ Step 3).
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Step 3. Determine the phases to trivialize the anomaly
The cohomology class of the anomaly of the Co1 symmetry of V f♮

is known to be the generator of SH(Co1) ∼= Z24. [Johnson-Freyd 1707.08388]
“supercohomology”

Therefore, we can construct the orbifold (V f♮)⊗24/Co1.
However, we know neither the actual values of the anomaly 3-cocycle
α : Co1 × Co1 × Co1 → U(1), nor the phases β of

Z
((V f♮)⊗24)
0

h
g (τ) = β(g, h)

(
Z(V f♮)h

g (τ)
)24

=: β̃(g, h)
∣∣∣Z(V f♮)h

g

∣∣∣24
to trivialize the phases from α.
(There seems no well-established way of calculating them.)

So we attempt to determine the phases β̃(g, h) from some consistency
conditions, that is, properties which the twisted partition functions
Z

(T )
0

h
g (τ) must satisfy.
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Step 3. Determine the phases to trivialize the anomaly

There are 7578 conjugacy classes [(g, h)] of commuting pairs,
and for each of them, we need to determine β̃(g, h).
▶ modular transformation (SL(2,Z) transformation):

Z
(T )
0

h
g (τ + 1) = Z

(T )
0

gh
g (τ), Z

(T )
0

h
g (−

1

τ
) = Z

(T )
0

g−1

h (τ).

→ The number of degrees of freedom of β̃(g, h) reduces to 445.
▶ GL(2,Z) transformation:

Z
(T )
0

h
g (−τ̄) =

[
Z

(T )
0

h−1

g (τ)
]∗
.

→ Among 445 β̃(g, h), 427 are β̃(g, h) ∈ {+1,−1}, and
the remaining 18

2 = 9 pairs are complex conjugates of each other.
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Step 3. Determine the phases to trivialize the anomaly
▶ Each twisted Hilbert space Hg is a representation of the centralizer
Cg := {h ∈ G | gh = hg}.
So, the twisted partition function Z(T )

0
h
g (τ) must be a character of

h ∈ Cg.
From the orthogonality of the irreducible characters,
the multiplicity of the a-th irreducible representation χa of Cg is

N(g, a) :=
1

|Cg|
∑
h∈Cg

χa(h)
∗Z

(T )
0

h
g (τ).

All the multiplicities N(g, a) must be integers.

These integrality conditions can determine some of the phases β̃(g, h),
but not all.
As a nontrivial observation, a simple choice β̃(g, h) = +1 for any
g, h ∈ Co1 satisfies all the integrality conditions!
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Step 3. Determine the phases to trivialize the anomaly

Conjecture

The choice β̃(g, h) = +1 for any g, h ∈ Co1 gives
the correct value of the orbifold partition function Z((V f♮)⊗24/Co1)(τ).

If this is the case, then the orbifold partition function (the Witten index)
is Z((V f♮)⊗24/Co1)(τ) = 665834752697050.
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Future directions

▶ Determine the phases β̃(g, h) and the Witten index Z((V f♮)⊗24/Co1)(τ).

▶ Compute Z((V f♮)⊗24/(Co1×A24))(τ). Is it 1?
Again, we have to determine the phases to trivialize the anomaly.
These phases are common to (V f♮)⊗24/Co1 and (V f♮)⊗24/Co1 ×A24,
so the integrality conditions on (V f♮)⊗24/Co1 ×A24 might give us
additional information on the phases.

▶ More fundamental approach to determining such phases?
(cf. In the case of a U(1) symmetry or its subgroup Zn ⊂ U(1),

we can calculate values of the anomaly 3-cocycle α(g, h, k).)
[Okada, Shimamura, Tachikawa, Yi 2509.02989]
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(Backup) Details of anomaly 3-cocycle

The anomaly 3-cocycle α : G×G×G→ U(1) appears in
the associativity of the lines implementing the G-action:

,

where ug,h : Hg,h → Hgh is the fusion operator.

We define the action Uh of h ∈ G on the twisted Hilbert space Hg

and the twisted partition function Zhg (τ) as

.



(Backup) Details of anomaly 3-cocycle

We can see that the anomaly 3-cocycle α is an obstacle to the orbifold;
for example, phases from α appear in UhUh′ = (phase from α)Uhh′ ,
and the modular transformations of Zhg (τ).

(Example) modular S transformation:

.



(Backup) Details of anomaly 3-cocycle
If the cohomology class [α] ∈ H3(G; U(1)) is trivial,
then using the 2-cochain γ such that α = dγ,
we define a new fusion operator ũg,h := γ(g, h)ug,h.
Then the phases α(g, h, k) do not appear in the associativity of
the new fusion operators ũg,h

.

So Ũg and Z̃hg (τ) defined with the new fusion operators ũg,h
also do not suffer from the phases from α.

Recalling , the new twisted partition function is

Z̃hg (τ) =
γ(h, g)

γ(g, h)
Zhg (τ).

(Z(T )
0

h
g (τ) = β(g, h)Z(T )h

g (τ) in our slides’ notation.)



(Backup) Step 2. Detailed description of lifts
The center of Spin(24) is Z2 × Z2 = ⟨−1̂SO(24)⟩ × ⟨−1Spin(24)⟩.

Spin(24)
↙/⟨−1̂SO(24)⟩ ↘ /⟨−1Spin(24)⟩

SemiSpin(24) SO(24)

The matrix form of g ∈ Co1 = Co0/Z2 is ±Mg ∈ SO(24).
When we fix one lift M̂g ∈ Spin(24) of Mg ∈ SO(24),

Spin(24)
M̂g ∈ Co0 (−1Spin(24) · M̂g) ̸∈ Co0

− 1̂SO(24) · M̂g ∈ Co0 −1̂SO(24) · (−1Spin(24) · M̂g) ̸∈ Co0

or
(−1Spin(24) · M̂g) ∈ Co0 M̂g ̸∈ Co0

−1̂SO(24) · (−1Spin(24) · M̂g) ∈ Co0 − 1̂SO(24) · M̂g ̸∈ Co0

↙ ↘
SemiSpin(24) SO(24)

g ∈ Co1 −g ̸∈ Co1
Mg ∈ Co0

−Mg ∈ Co0



(Backup) Step 2. Twisted partition function of fermions
If Mg and Mh ∈ SO(24) commute, then we can simultaneously
block-diagonalize them within SO(24) in the form of

cos 2πλ1 − sin 2πλ1
sin 2πλ1 cos 2πλ1

. . .
cos 2πλ12 − sin 2πλ12
sin 2πλ12 cos 2πλ12

 .

The twisted partition function Z(ψ⊗24)Mh
Mg

(τ) of 24 real chiral fermions

can be written in terms of the theta function with characteristic θ
[
a
b

]
(τ)

Z(ψ⊗24)Mh
Mg

(τ) =

12∏
i=1

1

η(τ)
θ

[
λ
(g)
i

λ
(h)
i

]
(τ).

The difference of the two lifts ±M̂g ∈ Spin(24) can be implemented as
the difference of λ12 and λ12 + 1.


