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Message
We want to compute the partition function of the orbifold of
the 24-fold tensor product of the Conway moonshine module
(Duncan’s module) V f♮ by the Conway group Co1 (anomalous-free)

Z(V f♮)⊗24/Co1(τ).

However, the calculation of an orbifold partition function was much
more difficult than we expected.

ZT /G(τ) =
∑

[(g,h)]∈{gh=hg}/∼

#[(g, h)]

#G
β(g, h)ZT

g,h(τ).

Step 1. List the conjugacy classes of commuting pairs
{(g, h) ∈ G×G | gh = hg} / (kgk−1, khk−1) ∼ (g, h).

Step 2. Compute the twisted partition functions ZT
g,h(τ).

Step 3. Determine the phases β(g, h) ∈ U(1) to cancel the phases
coming from anomaly 3-cocycle
(which is trivial in cohomology since G must be anomaly-free).
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Motivation

Conjecture (the Stolz–Teichner conjecture)

{2d N = (0, 1) SQFTs of degree n (= 2(cR − cL))}/∼ ∼= TMFn

[Stolz, Teichner 1108.0189]

The space of topological modular forms TMFn has 576-periodicity

TMFn+576
∼= TMFn.

If we believe the Stolz–Teichner conjecture, then the existence of

an N = 1 c = 288 chiral SCFT T
with the partition function (the Witten index) ZT (τ) = 1

is expected.
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Motivation
One candidate of

N = 1 c = 288 chiral SCFT T with the Witten index ZT (τ) = 1

is constructed with...

[Duncan math/0502267]
[Duncan, Mack-Crane 1409.3829]

The Conway moonshine module (Duncan’s module) V f♮

▶ an N = 1 chiral fermionic SCFT.
▶ the central charge is 12.

→ T = (V f♮)⊗24 ?

→ Z(V f♮)⊗24
(τ) = 2424. Too big.

▶ V f♮ has Co1 symmetry, and its anomaly corresponds to
the generator of SH3(BCo1) ∼= Z24. [Johnson-Freyd 1707.08388]

→ T = (V f♮)⊗24/Co1 (×S24 or A24) ? [Albert, Kaidi, Lin 2210.14923]

→ Z(V f♮)⊗24/Co1(τ) = ?
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More on the Conway moonshine module
The Conway moonshine module V f♮ is constructed as a Z2-orbifold of
24 real free fermions ψ⊗24. The details are as follows.

The theory of 24 real free fermions has Spin(24) symmetry.
The center of Spin(24) is Z2 × Z2 = ⟨−1̂SO(24)⟩ × ⟨−1Spin(24)⟩.

Spin(24)
↙/⟨−1̂SO(24)⟩ ↘ /⟨−1Spin(24)⟩

SemiSpin(24) SO(24)
⊃ ⟨−1̄Spin(24)⟩ ⊃ ⟨−1SO(24)⟩

The sectors of this fermionic theory are
−1Spin(24) even −1Spin(24) odd

−1̂SO(24) even A0
0 A0

1 → (V f♮)NS ↶ SemiSpin(24)

−1̂SO(24) odd A1
0 A1

1 → (V f♮)R
↓ ↓

⟨−1̂SO(24)⟩-orbifold
(ψ⊗24) ⇄

(V f♮)
⟨−1Spin(24)⟩-orbifold(ψ⊗24)NS (ψ⊗24)R↶

SO(24)
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More on the Conway moonshine module
The Conway group Co0 is the automorphism group of
a 24-dimensional even self-dual lattice called the Leech lattice.
So Co0 ⊂ SO(24). It is known that it lifts to Co0 ⊂ Spin(24),
and then it projects to Co1 = Co0/Z2 ⊂ SemiSpin(24).

Co0 ⊂ Spin(24)
↙ ∼=

SemiSpin(24) ⊃ Co1 Co0 ⊂ SO(24)

In the conformal-weight-32 subspace of the NS sector (V f♮)NS,
there exists one-dimensional subspace invariant under the action of
Co1 ⊂ SemiSpin(24), and it is an N = 1 supercurrent.

−1Spin(24) even −1Spin(24) odd
−1̂SO(24) even Co1-inv supercurrent → (V f♮)NS

−1̂SO(24) odd → (V f♮)R
↓ ↓

(ψ⊗24)NS (ψ⊗24)R
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Step 1. List the conjugacy classes of commuting pairs

We have to list all the conjugacy classes of commuting pairs

{(g, h) ∈ Co1 × Co1 | gh = hg} / (kgk−1, khk−1) ∼ (g, h).

Co0 = 2.Co1 is the automorphism group of the Leech lattice.
The shortest vectors of the Leech lattice have squared-norm 4,
and there are 196560 shortest vectors.
Therefore, an element of Co0 can be represented as a permutation of
196560 points.
An element of Co1 is then a permutation of 196560

2 = 98280 points.

An open source system GAP is good at handling permutation groups.
If we input the generators of Co1 represented as permutations,
GAP can list a representative of each conjugacy class of commuting
pairs.
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Step 2. Compute the twisted partition functions

The twisted partition functions of V f♮ can be calculated from
the twisted partition functions of ψ⊗24

Z
ψ⊗24

Xg,Yh(τ), X,Y = NS or R, g, h ∈ Co0,

where Xg and Yh denote the spatial and temporal twists respectively.

To obtain the correct twisted partition functions,
we have to consider everything in Co0 ⊂ Spin(24),
but in practice, Co0 ⊂ SO(24) as a matrix group is easier to handle,
so we work with Co0 ⊂ SO(24) as far as possible.
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Step 2. Compute the twisted partition functions

As input data, we have the matrix form of g, h ∈ Co0 in SO(24).
Basically, we only have to simultaneously block-diagonalize them
within SO(24) as

cos 2πθ1 − sin 2πθ1
sin 2πθ1 cos 2πθ1

. . .
cos 2πθ12 − sin 2πθ12
sin 2πθ12 cos 2πθ12

 ,

and plug these angles 2πθ into the formula of Jacobi theta function

Z
ψ⊗2

Xe
2πiθ(g) ,Ye

2πiθ(h)
(τ) = q

θ2
(g)
/2 θ1,2,3,4(τ, θ(g)τ + θ(h))

η(τ)
.
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Step 2. Compute the twisted partition functions

However, g ∈ Co0 ⊂ SO(24) lifts to two elements ĝ,−ĝ in Spin(24).
In terms of angles, one is 2πθ and the other is 2π(θ + 1).
One of them is in Co0 ⊂ Spin(24),
whereas the other is out of Co0 ⊂ Spin(24).
So we have to detect which of 2πθ or 2π(θ + 1) is the correct one.

This is extremely hard!
There are 445 SL(2,Z)-orbits of twisted partition functions ZV

f♮

Rg,Rh,
and we could calculate the correct values for 435 out of them
by using some consistency conditions and properties of
Spin(24)-conjugacy classes.
We cannot use them for the rest 10 because of some subtle properties
of their Spin(24)-conjugacy classes.
→ Use the fact that Co0 ⊂ Spin(24) preserves the supercurrent?
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Step 2. Compute the twisted partition functions

However, g ∈ Co0 ⊂ SO(24) lifts to two elements ĝ,−ĝ in Spin(24).
In terms of angles, one is 2πθ and the other is 2π(θ + 1).
One of them is in Co0 ⊂ Spin(24),
whereas the other is out of Co0 ⊂ Spin(24).
So we have to detect which of 2πθ or 2π(θ + 1) is the correct one.

This is extremely hard!
There are 445 SL(2,Z)-orbits of twisted partition functions ZV

f♮

Rg,Rh,
and we could calculate the correct values for 435 out of them
by using some consistency conditions and properties of
Spin(24)-conjugacy classes.
We cannot use them for the rest 10 because of some subtle properties
of their Spin(24)-conjugacy classes.
→ Use the fact that Co0 ⊂ Spin(24) preserves the supercurrent?
→ Succeeded on the train from Hiroshima to Saijo!
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Step 3. Determine the phases to trivialize the anomaly

The anomaly 3-cocycle α : G×G×G→ U(1) appears as

.

If the cohomology class [α] ∈ H3(G; U(1)) is trivial, then we can
cancel α by redefining the fusion operators ug,h by U(1) phases.

(If [α] ̸= 0, then α cannot be canceled, and this is the obstruction of
the modular invariance of the orbifold partition function.
So we cannot take the orbifold.)
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Step 3. Determine the phases to trivialize the anomaly

Therefore, when we take an orbifold by non-anomalous group G,
we have to sum up the twisted partition functions while multiplying
them by the phases to cancel the effect of anomaly cocycle α.

Theoretically, we know that the anomaly of Co1 symmetry of (V f♮)⊗24

is trivial at the level of cohomology, but we do not know its values as
a 3-cocycle.

It seems that no general techniques to determine the phases have been
developed so far.
We might be able to do so by exploiting some consistency conditions
such as the modular invariance, the integrality of the coefficients of
the partition functions, and so on.

We are still on the way...
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