

On the Symmetry of Lattice CFTs

Masaki Okada (Kavli IPMU, the University of Tokyo)

based on [arXiv:2412.19430]

Question (for mathematicians)

L : a lattice of rank n .

\hat{L} : the central extension

$$1 \rightarrow \mathbb{Z}_2 \rightarrow \hat{L} \rightarrow L \rightarrow 0 \quad (1)$$

specified by the 2-cocycle $\varepsilon : L \times L \rightarrow \mathbb{Z}_2$ required by physics.

The lattice VOA V_L is constructed from this \hat{L} .

Question: Is $\text{Aut}(L)$ a subgroup of $\text{Aut}(V_L)$?

It is known that $\text{Aut}(V_L)$ contains $\text{Aut}(\hat{L})$ as a subgroup, and $\text{Aut}(\hat{L})$ is an extension of $\text{Aut}(L)$:

$$1 \rightarrow \text{Hom}(L, \mathbb{Z}_2) \rightarrow \text{Aut}(\hat{L}) \rightarrow \text{Aut}(L) \rightarrow 1. \quad (2)$$

So, the problem is whether this (2) splits or not.

* $\text{Aut}(L)$ and $\text{Aut}(\hat{L})$ denote the automorphisms compatible with the bilinear form of L .

Question (for physicists)

From a lattice L , we can construct a chiral CFT V_L whose momentum lattice is L .

The vertex operator $V_k(z)$ ($k \in L$) is roughly $:e^{ik \cdot X(z)}:$, but we need a correction to modify their commutation relations into the bosonic / fermionic ones. As a result, the cocycle factor $\varepsilon(k, k') \in \mathbb{Z}_2$ appears:

$$V_k(z) \cdot V_{k'}(z') \sim \varepsilon(k, k') (z - z')^{k \cdot k'} V_{k+k'}(z'). \quad (3)$$

It is known that a symmetry $g \in \text{Aut}(L)$ of the lattice can be lifted to a symmetry $\hat{g} \in \text{Aut}(V_L)$ of the CFT, but because of the cocycle factor, the group structure of $\text{Aut}(L)$ is not guaranteed to be preserved by this lift.

Question: Is $\text{Aut}(L)$ a subgroup of $\text{Aut}(V_L)$?

What is the motivation?

In the study of moonshine phenomena, one of the goals is to construct a CFT (VOA) having a specific finite group symmetry. The symmetry of a lattice is often a promising ingredient (e.g. the monstrous moonshine), and in that case, we need to investigate the relation between $\text{Aut}(L)$ and $\text{Aut}(V_L)$ carefully.

For example, the odd Leech lattice CFT was considered to be a nice candidate of a CFT explaining the moonshine between the $c = 24$ $\mathcal{N} = 2$ extremal elliptic genus and the Mathieu group M_{24} [BDFK15], but the following result reveals that there are more difficulties than expected in the previous work.

Results

• When L is the odd Leech lattice,

$M_{24}, M_{23} \subset \text{Aut}(L)$ is not a subgroup of $\text{Aut}(V_L)$.

• When L is the Leech lattice,

$\text{Co}_0 = \text{Aut}(L)$ is not a subgroup of $\text{Aut}(V_L)$. [Gri73]

• Our method only needs the data of the lattice and the action of $\text{Aut}(L)$. No need of heavy group theory!

Method (for mathematicians)

Take generators of $\text{Aut}(L)$, say a and b , and their relations

$$a^2 = 1, b^3 = 1, (ba)^{23} = 1, \dots \quad (4)$$

Assume that (2) has a group homomorphism section $S : \text{Aut}(L) \rightarrow \text{Aut}(\hat{L})$. Then

$$S(a)^2 = 1, S(b)^3 = 1, (S(b)S(a))^{23} = 1, \dots \quad (5)$$

Since S is a homomorphism, the values of $S(g)(\hat{e}_i)$ ($i = 1, \dots, n$) completely determine the value of $S(g)(\hat{k})$ for any $\hat{k} \in \hat{L}$, where $\hat{e}_i \in \hat{L}$ is a lift of a basis $e_i \in L$.

Therefore, (5) translates to the equations w.r.t. $S(a)(e_i)$ and $S(b)(e_i)$, but they do not have a solution (by just a linear algebra; use computer).

$$\begin{array}{ccc} * \text{ Dictionary} & \uparrow \left\{ \begin{array}{ccc} S(g) \in \text{Aut}(\hat{L}) & \hat{k} \in \hat{L} & S(g)(\hat{k}) \\ \downarrow & \downarrow & \downarrow \\ \hat{g} \in \text{Aut}(V_L) & V_k(z) \in V_L & \zeta_g(k) V_{g(k)}(z) \end{array} \right\} \end{array}$$

Method (for physicists)

The symmetry $\hat{g} \in \text{Aut}(V_L)$ must satisfy

$$\hat{g}(V_k(z)) \cdot \hat{g}(V_{k'}(z')) \sim \varepsilon(k, k') (z - z')^{k \cdot k'} \hat{g}(V_{k+k'}(z')). \quad (6)$$

This (6) translates to the condition on the phase factor $\zeta_g(k) \in \mathbb{Z}_2$ of $\hat{g}(V_k(z)) = \zeta_g(k) V_{g(k)}(z)$ as

$$\varepsilon(k, k') \zeta_g(k + k') = \zeta_g(k) \zeta_g(k') \varepsilon(g(k), g(k')). \quad (7)$$

This (7) determines $\zeta_g(k)$ for any $k \in L$ from the values of $\zeta_g(e_i)$ ($i = 1, \dots, n$) where e_i is a basis of L .

Assume $\text{Aut}(L)$ is a subgroup of $\text{Aut}(V_L)$. Then any relation $g_1 \cdots g_m = 1$ in $\text{Aut}(L)$ translates to $\hat{g}_1 \circ \cdots \circ \hat{g}_m(V_k(z)) = V_k(z)$ in $\text{Aut}(V_L)$, and further

$$\zeta_{g_1}(g_2 \cdots g_m(k)) \cdots \zeta_{g_{m-1}}(g_m(k)) \zeta_{g_m}(k) = 1. \quad (8)$$

However, we found by computer a set of relations in $\text{Aut}(L)$ such that there are no values $\zeta_{g_j}(e_i)$ satisfying (8) for them.

References

- [Gri73] R. L. Griess, Jr., *Automorphisms of extra special groups and nonvanishing degree 2 cohomology*, Pacific J. Math. **48** (1973) 403–422.
- [BDFK15] N. Benjamin, E. Dyer, A. L. Fitzpatrick, and S. Kachru, *An extremal $\mathcal{N} = 2$ superconformal field theory*, J. Phys. A **48** (2015) 495401, arXiv:1507.00004 [hep-th].