

Moonshine Phenomena and Symmetries of lattice CFTs

2nd FoPM Symposium

2025/2/19

Department of Physics D2

Masaki Okada

Outline

1. Moonshine

1-1. What is monstrous moonshine?

1-2. How was it proved?

1-3. More moonshine phenomena

2. My research

(3. Group extension) if time permits

1-1. What is monstrous moonshine?

Here is the modular j -function.

$$j(q) = q^{-1} + 744$$

$$+ 196884 q + 21493760 q^2 + 864299970 q^3 + \dots$$

This function is important in elliptic curve theory,
class field theory, ...

In 1978, John McKay noticed $196884 = 1 + 196883$.

Furthermore, J. G. Thompson observed

$$j(q) = q^{-1} + 744$$

$$+ \underbrace{196884}_{\substack{\parallel \\ 1+196883}} q + \underbrace{21493760}_{\substack{\parallel \\ 1+196883}} q^2 + \underbrace{864299970}_{\substack{\parallel \\ 2 \times 1 + 2 \times 196883}} q^3 + \dots$$

$$+ 21296876 + 21296876 + 842609326$$

Observation

Data (irrep. dim.) of the monster group M

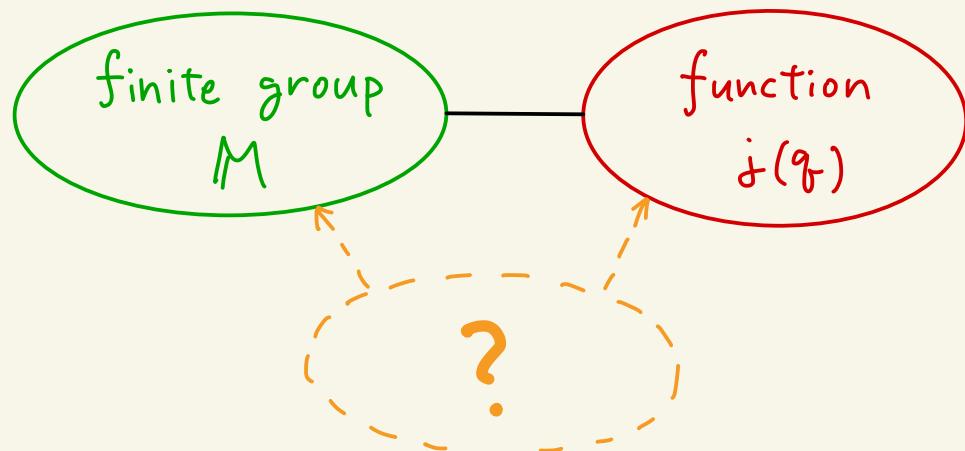
appear in the coefficients of $j(q)$!

(M is the largest sporadic group.)

“monstrous moonshine”

It implies that

something which explains the observation is hidden.



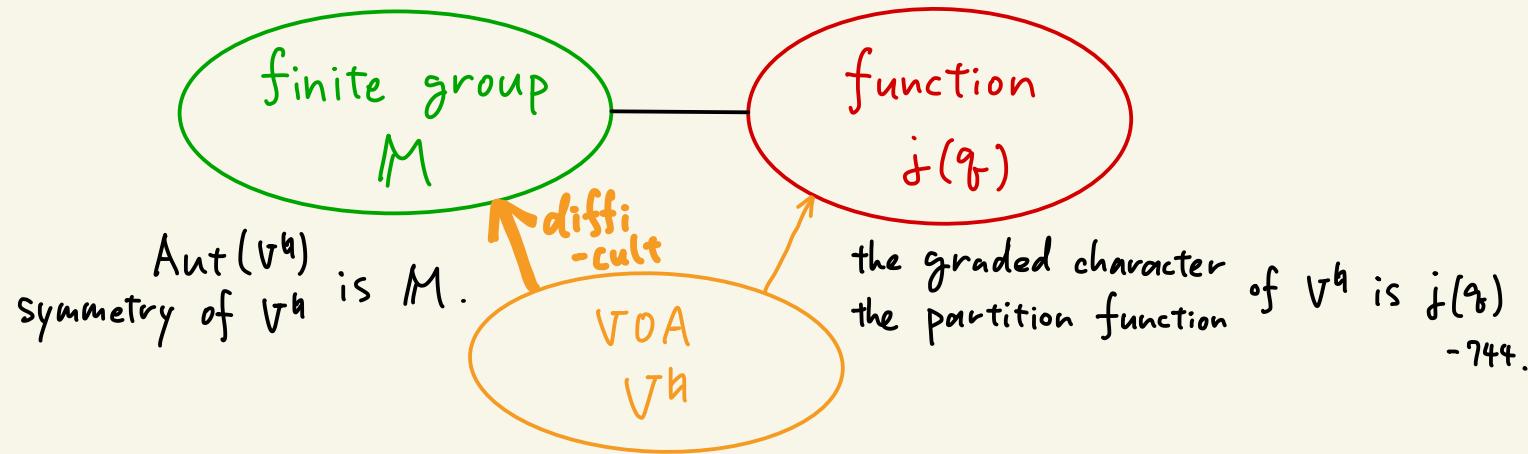
there would exist some nice infinite-dim. graded vector space

which is an M -module (rep. of M)

whose graded character is $j(g)$.

In fact, Frenkel, Lepowski, Meurman (1983-88) constructed it !

It was a VOA (Vertex Operator Algebra) called moonshine module V^h .

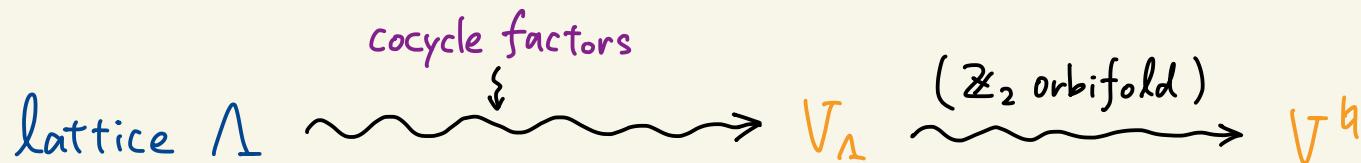


(VOA also gives a mathematical formulation of
2d CFT (Conformal Field Theory) in physics.)

What does V^h look like? How $\text{Aut}(V^h) = M$ was proved?

1-2. How was it proved?

The VOA V^h was constructed from the Leech lattice $\Lambda \subset \mathbb{R}^{\text{24}}$ and an additional information called *cocycle factors* taking values ± 1 .



As a result, the symmetry group $\text{Aut}(V^h)$ of V^h is a certain combination of $\text{Aut}(\Lambda)$ and $(\mathbb{Z}_2)^{24}$ (and \mathbb{Z}_2).

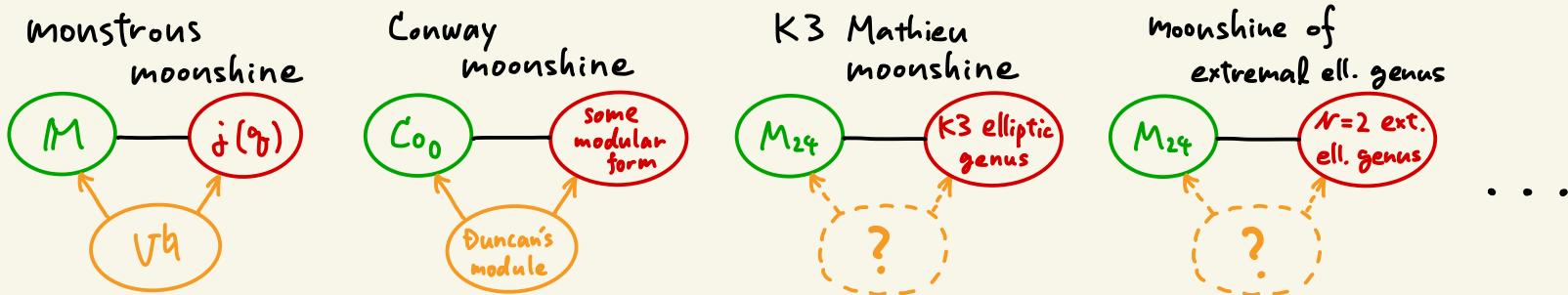
$$\text{Aut}(\Lambda) = C_{D_0} \xrightarrow{\text{combined with } (\mathbb{Z}_2)^{24}} \text{Aut}(V_\Lambda) \xrightarrow{\text{combined with } \mathbb{Z}_2} \text{Aut}(V^h)$$

A careful analysis of these combinations reveals $\text{Aut}(V^h) = M$.

1-3. More moonshine phenomena

As a result of interaction between mathematics and physics, relations similar to that of M and $j(q)$ were observed

in more examples of finite groups and functions.



A nice underlying object is already known in some cases, but not yet found in many cases.

2. My research

- Ultimate goal is to find nice underlying objects.
- I developed an easy way to analyze this combination for more general lattices.

$$\text{Aut}(L) \xrightarrow{\substack{\text{a lattice} \\ \downarrow \\ \text{combined with } (\mathbb{Z}_2)^{\text{rank } L}}} \text{Aut}(V_L)$$

As a result of the analysis for the odd Leech lattice O_{24} ,
I found a gap overlooked in a previous research

[arXiv:2412.19430]

on a certain moonshine.

- work in progress : Is Duncan's module useful for K3 moonshine ?

3. Group extension

ways of combining two groups N and G

= ways of introducing a multiplication law in the set $\{(n, g) \mid n \in N, g \in G\}$.

direct product

the easiest way!

$$(n, g) \cdot (n', g') = (nn', gg')$$

generalize ↓ special case ($G \rtimes N$ is trivial)

semidirect product

$$(n, g) \cdot (n', g') = (ng(n'), gg')$$

generalize ↓ special case (the exact seq. splits)

group extension of G by N

$$(n, g) \cdot (n', g') = (ng(n') \varepsilon(g, g'), gg')$$

exact sequence
 $1 \rightarrow N \rightarrow \mathbb{G} \rightarrow G \rightarrow 1$

direct prod.

semidirect prod.

group extension

N is always a subgroup of a group extension of G by N .

However, G is not a subgroup of it in general.

(G is a subgroup if and only if it is a semidirect product.)

It was already known that

a specific group extension of $\text{Aut}(L)$ by $(\mathbb{Z}_2)^{\text{rank } L}$

is a subgroup of $\text{Aut}(V_L)$.

My analysis showed that $\text{Aut}(O_{24})$ is not a subgroup of $\text{Aut}(V_{O_{24}})$.

(the group extension does not split.)