

On the Mathieu group symmetry of an odd Leech lattice CFT

Masaki Okada

Kavli IPMU, the University of Tokyo

September 16, 2024

[work in progress]

Summary

a lattice $L \rightsquigarrow$ the lattice VOA V_L (CFT with momentum lattice L)

$\text{Aut}(L)$ is not a subgroup of $\text{Aut}(V_L)$ in general

because of **the cocycle factor**. Instead,

A group extension of $\text{Aut}(L)$ is a subgroup of $\text{Aut}(V_L)$.

[Frenkel, Lepowsky, Meurman 1988]
[Dong, Nagatomo math/9808088]

In fact, we proved

- ▶ For $L =$ odd Leech lattice,
 $M_{24}, M_{23} \subset \text{Aut}(L)$ are not subgroups of $\text{Aut}(V_L)$.
- ▶ For $L =$ Leech lattice,
 $\text{Co}_0 = \text{Aut}(L)$ is not a subgroup of $\text{Aut}(V_L)$. [Griess 1973]

→ Some moonshine phenomena seem more mysterious than we think.

Background: Moonshine Phenomena

The **elliptic genus** of a 2d $\mathcal{N} = 2$ SCFT (chiral for simplicity) is defined as $\text{tr}_{\mathcal{H}_R} (-1)^F q^{L_0 - \frac{c}{24}} y^{J_0}$.

If we decompose

the **elliptic genus** $Z_{\text{ext}}(q, y)$ of a certain 2d $\mathcal{N} = 2$ SCFT (called the $\mathcal{N} = 2$ index-4 extremal elliptic genus)

into

the characters $\text{ch}_{h,Q}(q, y)$ of

the $c = 24$ $\mathcal{N} = 2$ superconformal algebra (SCA),

$$Z_{\text{ext}} = \text{ch}_{1,4} + 47\text{ch}_{1,0} + 23\text{ch}_{2,4} + 2024\text{ch}_{2,3} + 14168\text{ch}_{2,2} + \dots$$

In the coefficients,

the dimensions of **irreps** of the Mathieu group M_{24} appear:

$$1, 47 = 45 + 1 + 1, 23, 2024, 14168 = 10395 + 3520 + 253, \dots$$

“Moonshine phenomenon”

$$\rightarrow \text{CFT} = \bigoplus_i (\text{rep of } M_{24})_i \otimes (\text{irrep of } \mathcal{N} = 2 \text{ SCA})_{h_i, Q_i} ?$$

Background: Moonshine Phenomena

Question

Does there exist a **VOA-like object V** containing an $\mathcal{N} = 2$ SCA, whose elliptic genus is **the extremal elliptic genus $Z_{\text{ext}}(q, y)$** , and whose symmetry group $\text{Aut}(V)^{\mathcal{N}=2}$ preserving the $\mathcal{N} = 2$ SCA contains **the Mathieu group M_{24}** as a subgroup?

Examples of Moonshine phenomena:

Monstrous Moonshine	weight-0 mod. func. (J -function $J(q)$)	Virasoro algebra	Monster group \mathbb{M}	Monster VOA $V^\natural = V_{\text{Leech}}/\mathbb{Z}_2$
Conway Moonshine	$\frac{\theta_{E_8}(\tau)\eta(\tau)^8}{\eta(\tau/2)^8\eta(2\tau)^8} - 8$	$\mathcal{N} = 1$ SCA	Conway group Co_0	Duncan SVOA $V^{s\natural}$
K3 Mathieu Moonshine	weight-0 index-1 weak Jacobi form	$\mathcal{N} = 4$ SCA	Mathieu group M_{24}	?
above Question	weight-0 index-4 weak Jacobi form Z_{ext}	$\mathcal{N} = 2$ SCA	Mathieu group M_{24}	?
	\vdots			

Background: Idea to explain M_{23} by [BDFK]

Discussion by [Benjamin, Dyer, Fitzpatrick, Kachru 1507.00004]:

1. odd Leech lattice L : the unique rank-24 odd self-dual lattice without vector of square-length 2
~~> the fermionic CFT whose NS sector V_L consists of states $\alpha_{-m_1}^{\mu_1} \cdots \alpha_{-m_n}^{\mu_n} |k\rangle$ ($\mu_i = 1, \dots, 24$, $m_i \in \mathbb{Z}_{>0}$, $k \in L$).
2. We can find a $c = 24$ $\mathcal{N} = 2$ SCA $\{T(z), J(z), G^\pm(z)\}$ in V_L , such that the elliptic genus is $Z_{\text{ext}}(q, y)$.
Its $U(1)$ current $J(z)$ is in the direction of the first coordinate: $J(z) \sim \partial X^1(z)$.
3. The isometry group $\text{Aut}(L)$ of L contains M_{24} as a permutation group of the 24 coordinates.
Its subgroup stabilizing one coordinate is M_{23} .
4. Therefore, the automorphism group $\text{Aut}(V_L)$ of V_L contains M_{24} , and its subgroup M_{23} preserves the $\mathcal{N} = 2$ SCA...?
Here is a problem.

[(not covered in this talk) There also seems to be a problem in the choice of supercurrents $G^\pm(z)$ in Step 2, but it is amendable by constructing the $\mathcal{N}=2$ SCA from ternary codes [Gaiotto, Johnson-Freyd 1811.00589].]

Cocycle Factor

Some literature on moonshine argues that

$\text{Aut}(L)$ is a subgroup of $\text{Aut}(V_L)$,

but it is not the case in general because of **the cocycle factor**.

The cocycle factor:

The vertex operator $V_k(z)$ ($k \in L$) of V_L is roughly $:e^{ik \cdot X(z)}:$,
but we need to modify the commutation relation

$$:e^{ik \cdot X(z)}:\cdots:e^{ik' \cdot X(w)}: = (-1)^{k \cdot k'} :e^{ik' \cdot X(w)}:\cdots:e^{ik \cdot X(z)}:$$

to the desired one of the vertex operators

$$V_k(z) \cdot V_{k'}(w) = (-1)^{|k|^2 |k'|^2} V_{k'}(w) \cdot V_k(z).$$

As a result, **the cocycle factor** $\varepsilon : L \times L \rightarrow \mathbb{Z}_2$ appears:

$$V_k(z) \cdot V_{k'}(w) \sim \varepsilon(k, k') (z - w)^{k \cdot k'} V_{k+k'}(w).$$

(The cocycle condition follows from the associativity of $V_k(z)$.)

(Outline) Proof that $\text{Aut}(L)$ is not a subgroup of $\text{Aut}(V_L)$

An isometry $g \in \text{Aut}(L)$ must lift to an automorphism $\hat{g} \in \text{Aut}(V_L)$ as

$$(*) \quad \hat{g}(V_k(z)) \cdot \hat{g}(V_{k'}(w)) \sim \varepsilon(k, k') (z - w)^{k \cdot k'} \hat{g}(V_{k+k'}(w)).$$

$(*)$ translates to the condition on the phase factor $\zeta_g(k) \in \mathbb{Z}_2$ or $U(1)$ of $\hat{g}(V_k(z)) = \zeta_g(k) V_{g(k)}(z)$ as

$$\varepsilon(k, k') \zeta_g(k + k') = \zeta_g(k) \zeta_g(k') \varepsilon(g(k), g(k')).$$

This condition determines $\zeta_g(k)$ for any $k \in L$

from the values of $\zeta_g(e_1), \dots, \zeta_g(e_{24})$ where $\{e_i\}_i$ is a basis of L .

If $\text{Aut}(L)$ is a subgroup of $\text{Aut}(V_L)$,

then any relation $g_1 \cdots g_n = 1$ in $\text{Aut}(L)$

translates to $\hat{g}_1 \circ \cdots \circ \hat{g}_n(V_k(z)) = V_k(z)$ in $\text{Aut}(V_L)$,

and further $(**)$ $\zeta_{g_1}(g_2 \cdots g_n(k)) \cdots \zeta_{g_{n-1}}(g_n(k)) \zeta_{g_n}(k) = 1$.

However, there exist a set of relations in $\text{Aut}(L)$ such that

there are no values $\zeta_{g_i}(e_1), \dots, \zeta_{g_i}(e_{24})$ satisfying $(**)$ for them.

Mathematical Formulation

The lattice VOA V_L is contructed from the central extension \hat{L} of L by $\mathbb{Z}_2 = \langle \kappa \mid \kappa^2 = 1 \rangle$:

$$1 \rightarrow \mathbb{Z}_2 = \langle \kappa \mid \kappa^2 = 1 \rangle \rightarrow \hat{L} \rightarrow L \rightarrow 0,$$

associated to the 2-cocycle $\varepsilon : L \times L \rightarrow \mathbb{Z}_2$.

(An element (κ^m, k) of \hat{L} corresponds to $(-1)^m V_k(z)$, and the multiplication in \hat{L} is like $V_k(z) \cdot V_{k'}(z) \sim \varepsilon(k, k') V_{k+k'}(z)$.)

$\text{Aut}(V_L)$ contains $\text{Aut}(\hat{L})$ as a subgroup, and $\text{Aut}(\hat{L})$ is a group extension of $\text{Aut}(L)$ [Frenkel, Lepowsky, Meurman]:

$$(\#) \quad 1 \rightarrow \text{Hom}(L, \mathbb{Z}_2) \rightarrow \text{Aut}(\hat{L}) \rightarrow \text{Aut}(L) \rightarrow 1.$$

$\text{Hom}(L, \mathbb{Z}_2) \cong (\mathbb{Z}_2)^{24}$ corresponds to the choice of $\zeta_g(e_1), \dots, \zeta_g(e_{24})$.

Therefore, whether $\text{Aut}(L)$ is a subgroup of $\text{Aut}(\hat{L})$ or not is equivalent to whether the short exact sequence $(\#)$ splits or not.

Results and Future Work

We proved

- ▶ For $L = \text{odd Leech lattice}$,
 $M_{24}, M_{23} \subset \text{Aut}(L)$ are not subgroups of $\text{Aut}(V_L)$.
- ▶ For $L = \text{Leech lattice}$,
 $\text{Co}_0 = \text{Aut}(L)$ is not a subgroup of $\text{Aut}(V_L)$. [Griess 1973]

Instead, for $L = \text{odd Leech lattice}$,

$\text{Aut}(V_L)$ contains $(\mathbb{Z}_2)^{24} \cdot M_{24}$ as a subgroup.

Its subgroup stabilizing one coordinate is $(\mathbb{Z}_2)^{23} \cdot M_{23}$.

However, the $\mathcal{N} = 2$ SCA by [BDFK] is not preserved by $(\mathbb{Z}_2)^{23} \cdot M_{23}$!
(The supercurrents $G^\pm(z)$ are subject to nontrivial action of $(\mathbb{Z}_2)^{23}$.)

Future work:

Why the dimensions of irreps of M_{24} appear? Even M_{23} is nontrivial.
(the subalgebra of the $\mathcal{N} = 2$ SCA consisting of only $T(z)$ and $J(z)$? another CFT?)