

Non-invertible symmetries act locally by quantum operations

Masaki Okada

Kavli IPMU, the University of Tokyo

May 22, 2024

joint work with Yuji Tachikawa
[arXiv:2403.20062[hep-th]]

Self Introduction

Masaki Okada

- ▶ second year PhD student of physics.
- ▶ interested in Mathieu Moonshine and working with Yuji Tachikawa (but not much progress).
- ▶ sometimes study **non-invertible symmetries**, a generalized notion of group symmetry allowing some non-invertibility.
this talk: [arXiv:2403.20062[hep-th]]

Example of Non-invertible Symmetry

Example (quantum transverse-field Ising chain)

states: $|\bullet^{s_1} \bullet^{s_2} \cdots \bullet^{s_n}\rangle$, $s_i = 0$ or 1 (spin- $\frac{1}{2}$)

Hamiltonian: $H = \sum_i (Z_i Z_{i+1} + X_i)$

symmetries $[H, X] = 0$:

► spin flip g

action on states $g : |\cdots \bullet^{s_i} \cdots \rangle \mapsto |\cdots \bullet^{s_i+1 \pmod 2} \cdots \rangle$

g is unitary and invertible $g^{-1} = g^\dagger = g$.

action on local operators $g : O \mapsto g^\dagger O g$

$$g(O) = \underbrace{\cdots \bullet^O \bullet^O \bullet \cdots}_{g} = \cdots \bullet \boxed{\bullet^O} \bullet \cdots$$

► Kramers-Wannier duality D

action on states $D : \langle \cdots \bullet^{t_i} \cdots | D | \cdots \bullet^{s_i} \cdots \rangle = \prod_i (-1)^{t_i(s_i + s_{i+1})}$

D is **non-invertible**, but its dual satisfies $D^\dagger D = \mathbf{1} + g$.

action on local operators $D : O \mapsto \bigcirc_D \bullet^O$

e.g. $D : Z_i Z_{i+1} \mapsto X_i, X_i \mapsto Z_{i-1} Z_i$.

Background: Bischoff's idea

In the context of local conformal net (2d CFT), Bischoff et. al. proved the following [\[arXiv:1608.00253\[math-ph\]\]](https://arxiv.org/abs/1608.00253), [\[arXiv:2204.14105\[math.OA\]\]](https://arxiv.org/abs/2204.14105), ... :

Let us generalize the orbifold of a theory \mathcal{A} by

the action of a **finite group** on \mathcal{A} by **automorphisms**

to

the action of a **hypergroup** on \mathcal{A} by **completely positive maps**.

Then Galois-theory-like statements hold for local conformal nets.

- ▶ In quantum field theory, **hypergroups** are used to describe the algebra of **non-invertible symmetries**.
- ▶ In quantum information theory, **completely positive maps** describe **quantum operations**, processes which can be performed on quantum systems.

→ We want to introduce Bischoff's idea to physics, in a physicist-friendly language.

Non-invertible Symmetry Acts locally as Quantum Operation

the key idea:

$$\mathcal{X}(O) := \text{circle with } O \xrightarrow{X} \text{circle with } O \xrightarrow{X}$$

Diagram illustrating the Stinespring representation. A local operator O is transformed by a non-invertible symmetry X into a local operator $\pi_{X\bar{X}}(O)$, which is then transformed by a unitary V into a local operator \mathcal{H} . The final state is then transformed by a unitary V^\dagger into a local operator $\mathcal{H}_{X\bar{X}}$.

The action of a **non-invertible symmetry** X on local operators $O \mapsto \mathcal{X}(O)$ has a **Stinespring representation** $\mathcal{X}(O) = V^\dagger \pi_{X\bar{X}}(O) V$.
⇒ It is a **completely positive map**.

- ▶ We also demonstrated this in the example of the Ising chain.
- ▶ This picture is valid not only in 2d CFTs, but also in any-dimensional QFTs with codim-1 non-invertible symmetries.
- ▶ more interaction between non-invertible symmetry and quantum information?

(Backup) Stinespring Rep. of Completely Positive Map

quantum operation from a system on \mathcal{H}_A to \mathcal{H}_B :

1. Couple the system \mathcal{H}_A with an ancillary system \mathcal{H}_R as $\mathcal{H}_A \otimes \mathcal{H}_R =: \mathcal{H}_E$.
2. Perform unitary quantum gates $\mathcal{H}_E \rightarrow \mathcal{H}_E$.
3. Trace out the extra system (perform measurement) as $\mathcal{H}_E \rightarrow \mathcal{H}_B$.

This defines a **completely positive map** from density matrices on \mathcal{H}_A to those on \mathcal{H}_B .

More generally,

$(B(\mathcal{H}))$: the C^* -algebra of bounded linear operators on the Hilbert space \mathcal{H})

A linear map $\mathcal{E} : B(\mathcal{H}_A) \rightarrow B(\mathcal{H}_B)$ is **completely positive**
 $\iff \exists \mathcal{H}_E, \exists V : \mathcal{H}_A \rightarrow \mathcal{H}_E, \exists \pi : B(\mathcal{H}_B) \rightarrow B(\mathcal{H}_A)$ $*$ -hom.,
 $\mathcal{E}(O_B) = V^* \pi(O_B) V$ for any $O_B \in B(\mathcal{H}_B)$.

" \mathcal{E} has a **Stinespring representation** (π, V, \mathcal{H}_E) ."