

Asymptotic density of states in 2d CFTs with non-invertible symmetries

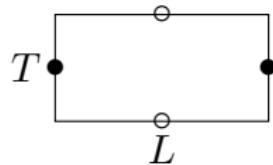
Masaki Okada

Kavli IPMU, the University of Tokyo

September 16, 2023

based on a joint work with
Y.-H. Lin, S. Seifnashri, and Y. Tachikawa
[arXiv:2208.05495[hep-th]]

2d diagonal RCFT on torus



$$\mathcal{H}_1 = \bigoplus_a V_a \otimes \overline{V_a}$$

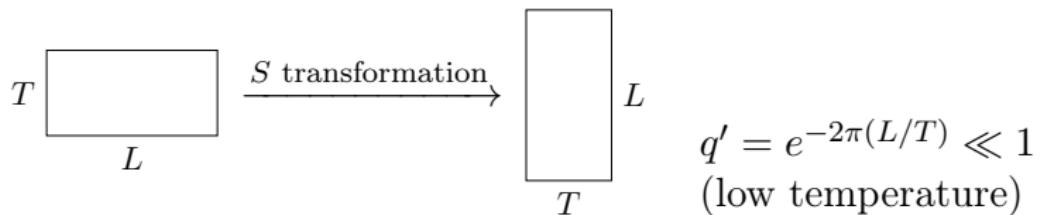
$$Z_1(q) = \text{tr}_{\mathcal{H}_1} q^{H/2\pi} = \sum_a \chi_a(q) \overline{\chi_a(q)}$$
$$(q = e^{-2\pi(T/L)} = e^{-2\pi\beta})$$

the **asymptotic density** of states in the sector $V_a \otimes \overline{V_a}$:

$$\text{“} \frac{\dim V_a \otimes \overline{V_a}}{\dim \mathcal{H}_1} \text{”} = \lim_{\beta \rightarrow 0} \frac{\text{tr}_{V_a \otimes \overline{V_a}} e^{-\beta H}}{\text{tr}_{\mathcal{H}_1} e^{-\beta H}}$$

(ratio of partition function)

2d diagonal RCFT on torus



$$\chi_a(q) = \sum_b \overline{S_{ba}} \chi_b(q') \sim S_{1a} q'^{-c/24}$$

\uparrow assumption
 $\begin{cases} \chi_1(q') = q'^{-c/24}(\mathbf{1} + \bullet q'^{\bullet} + \dots) \\ \chi_{a \neq 1}(q') = q'^{-c/24}(\bullet q'^{\bullet} + \dots) \end{cases}$

$$\therefore \text{tr}_{V_a \otimes \overline{V_a}} q^{H/2\pi} = \chi_a(q) \overline{\chi_a(q)} \sim S_{1a} \overline{S_{1a}} q'^{-c/12}$$

$$\therefore \text{(asymptotic density of } V_a \otimes \overline{V_a}) \propto S_{1a} \overline{S_{1a}}$$

→ How to derive such **asymptotic densities** for more general CFTs with **modular tensor category (MTC)** symmetry, **fusion category (FC)** symmetry, ...?

(More fundamentally, what is the counterpart of “the sector $V_a \otimes \overline{V_a}$ ” for more general CFTs with **modular tensor category (MTC)** symmetry, **fusion category (FC)** symmetry, ...?)

2d CFT with finite group symmetry G

the action of $g \in G$ on \mathcal{H}_1

$$U_g : \mathcal{H}_1 \rightarrow \mathcal{H}_1$$

$$\mathcal{H}_1 = \bigoplus_{\rho \in \text{Irrep}(G)} \mathcal{H}_1^\rho$$

$$Z_1(q) = \text{tr}_{\mathcal{H}_1} q^{H/2\pi}$$

2d CFT with finite group symmetry G

the **asymptotic density** of states in the sector \mathcal{H}_1^ρ :
 (S. Pal and Z. Sun [2004.12557])

① $P_1^\rho := \frac{\dim \rho}{|G|} \sum_{g \in G} \overline{\chi_\rho(g)} U_g$ is the projection $\mathcal{H}_1 \twoheadrightarrow \mathcal{H}_1^\rho$.
 (\because the character orthogonality $\sum_{g \in G} \overline{\chi_\rho(g)} \chi_{\rho'}(g) = |G| \delta_{\rho, \rho'}$)

$$\textcircled{2} \quad Z_1^\rho(q) := \text{tr}_{\mathcal{H}_1^\rho} q^{H/2\pi} = \text{tr}_{\mathcal{H}_1} P_1^\rho q^{H/2\pi}$$

$$= \frac{\dim \rho}{|G|} \sum_{g \in G} \overline{\chi_\rho(g)} \begin{array}{c} \boxed{} \\ \hline g \end{array} = \frac{\dim \rho}{|G|} \sum_{g \in G} \overline{\chi_\rho(g)} \begin{array}{c} \boxed{} \\ \uparrow g \end{array}$$

$$\sim \frac{\dim \rho}{|G|} \quad \overline{\chi_\rho(e)} \begin{array}{c} \boxed{} \\ \uparrow e \end{array} = \frac{(\dim \rho)^2}{|G|} Z_1(q')$$

$$\therefore \text{ (asymptotic density of } \mathcal{H}_1^\rho \text{) } \propto (\dim \rho)^2$$

finite group symmetry vs diagonal RCFT

- finite group G :
invertible fusion category consisting of

$$U_g = \xrightarrow[g]{} : \mathcal{H}_1^\rho \rightarrow \mathcal{H}_1^\rho$$
$$\Downarrow \quad \Downarrow$$
$$|\psi\rangle \mapsto \rho(g)|\psi\rangle$$

- diagonal RCFT :
modular tensor category consisting of

the Verlinde lines $\xrightarrow[a]{} : V_b \otimes \overline{V_b} \rightarrow V_b \otimes \overline{V_b}$

$$\Downarrow \quad \Downarrow$$
$$|\psi\rangle \mapsto \frac{S_{ab}}{S_{1b}}|\psi\rangle$$

2d diagonal RCFT revisited

the **asymptotic density** of states in the sector $V_a \otimes \overline{V_a}$:

① $P_1^{(a,a)} := \sum_b S_{1a} \overline{S_{ba}}$ $\xrightarrow[a]{}$ is
the projection $\mathcal{H}_1 \twoheadrightarrow V_a \otimes \overline{V_a}$.

② $\text{tr}_{V_a \otimes \overline{V_a}} q^{H/2\pi} = \text{tr}_{\mathcal{H}_1} P_1^{(a,a)} q^{H/2\pi}$

$$\begin{aligned}
 &= \sum_b S_{1a} \overline{S_{ba}} \begin{array}{|c|} \hline \xrightarrow[b]{} \\ \hline \end{array} = \sum_b S_{1a} \overline{S_{ba}} \begin{array}{|c|} \hline \uparrow b \\ \hline \end{array} \\
 &\sim S_{1a} \overline{S_{1a}} \begin{array}{|c|} \hline \uparrow 1 \\ \hline \end{array} = S_{1a} \overline{S_{1a}} Z_1(q')
 \end{aligned}$$

\therefore (**asymptotic density** of $V_a \otimes \overline{V_a}$) $\propto S_{1a} \overline{S_{1a}}$

For general **MTC**, just define the sector $\mathcal{H}_1^{(a,a)} := P^{(a,a)} \mathcal{H}_1$.

2d diagonal RCFT: twisted sectors

the projections for

the a -twisted Hilbert space $\mathcal{H}_a = \bigoplus_{c,d} N_{ad}^c V_c \otimes \overline{V_d} :$

$$P_a^{(c,d)} := \sum_{b,b'} S_{1c} \overline{S_{cb}} S_{1d} \overline{S_{db'}} \begin{array}{c} \xrightarrow{a} \\ \uparrow \\ \xrightarrow{b} \\ \downarrow \\ \xrightarrow{b'} \end{array} : \mathcal{H}_a \rightarrow N_{ad}^c V_c \otimes \overline{V_d}$$

→ (asymptotic density of $N_{ad}^c V_c \otimes \overline{V_d}$) $\propto N_{ad}^c S_{1c} S_{1d}$

For general **MTC**, just define the sector $\mathcal{H}_a^{(c,d)} := P_a^{(c,d)} \mathcal{H}_a$.

What is the sector $\mathcal{H}_a^{(c,d)}$ for general MTC?

→ $\mathcal{H}_a^{(c,d)}$ is the a -twisted sector

of the sector $\mathcal{H}^{(c,d)}$ which transforms under
the **irreducible representation** labeled by (c,d)

of the “tube algebra” of the MTC.

symmetry category	MTC \mathcal{M}	FC \mathcal{C}
Drinfeld center	$\mathcal{Z}(\mathcal{M}) = \mathcal{M} \boxtimes \mathcal{M}^{\text{op}}$	$\mathcal{Z}(\mathcal{C})$
projector $P_a^\mu : \mathcal{H}_a \twoheadrightarrow \mathcal{H}_a^\mu$ (μ ∈ Drinfeld center)	$P_a^{(c,d)} := \sum_{b,b'} S_{1c} \overline{S_{cb}} S_{1d} \overline{S_{db'}}$ $\mathcal{H}_a^{(c,d)} := P_a^{(c,d)} \mathcal{H}_a$	$P_a^\mu := \sum_\nu S_{1\mu} \overline{S_{\mu\nu}}$ $\mathcal{H}_a^\mu := P_a^\mu \mathcal{H}_a$
tube algebra	$\left\{ \begin{array}{c c} \begin{array}{c} a' \\ \uparrow \\ x_{a,a'}^{b,\alpha} \\ \uparrow \\ a \end{array} & a, a', b \in \mathcal{C} \\ b & x_{a,a'}^{b,\alpha} \in \text{Hom}(b \otimes a, a' \otimes b) \end{array} \right\}$	
$\mathcal{H}^\mu \curvearrowright$ irrep μ of tube alg	$\mathcal{H}^{(c,d)} = \bigoplus_a \mathcal{H}_a^{(c,d)}$	$\mathcal{H}^\mu = \bigoplus_a \mathcal{H}_a^\mu$
asymptotic density of \mathcal{H}_a^μ	$\propto N_{ad}^c S_{1c} S_{1d}$	$\propto \langle \mu, a \rangle \dim \mu$