

Towards Hodge Theoretic Characterizations of 2d Rational SCFTs

Masaki Okada

Kavli IPMU, the University of Tokyo

February 7, 2023

based on joint works with
A. Kidambi and T. Watari [arXiv:2205.10299[hep-th]]
T. Watari [arXiv:2212.13028[hep-th]]

2d Rational CFT

At some special points in a moduli space of CFT, the symmetry of CFT is enhanced.

$\left(\begin{array}{l} \text{the chiral algebra } \mathcal{A} \text{ is larger than the Virasoro algebra} \\ \rightarrow \# \text{ (primary fields (irrep.) of } \mathcal{A} \text{)} < \infty \end{array} \right)$
 \rightarrow Rational CFT

known examples of 2d RCFT

- ▶ It is determined when a torus-target CFT is rational.
e.g. S^1 target with radius R such that $\frac{R^2}{\alpha'} \in \mathbb{Q}$
- ▶ Gepner models \rightarrow some Calabi-Yau targets

How many more RCFTs? characterization by target geometry?

Gukov-Vafa Conjecture

Conjecture [Gukov Vafa '02]

For a Ricci-flat Käler target $(M; G, B)$,

the SCFT is $\overset{?}{\iff}$ M and its mirror W
rational are of CM-type
with the same CM field

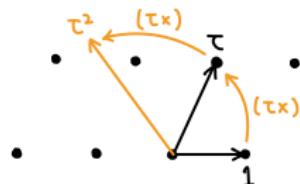
In [Kidambi Watari MO '22, Watari MO '22],

- ▶ we pointed out some need for refinement of this statement.
- ▶ we examined this statement for $M = T^4$.
→ “RCFT \Rightarrow CM” but the converse is not true.
- ▶ By adding one more condition,
we can achieve a necessary and sufficient condition.

Complex Multiplication

CM-type : a generalized notion of
an elliptic curve with complex multiplication.

$$T_\tau^2 = \mathbb{C}/\mathbb{Z} \oplus \tau\mathbb{Z}$$



If $\exists a, b \in \mathbb{Z}$ such that $\tau^2 = a\tau + b$,
 (τx) is a linear map $\mathbb{Z} \oplus \tau\mathbb{Z} \rightarrow \mathbb{Z} \oplus \tau\mathbb{Z}$.
($T_\tau^2 \rightarrow T_\tau^2$)

Otherwise,

(τx) is not such a linear map.

$\Downarrow (\otimes \mathbb{Q})$

If $\exists D \in \mathbb{Z}_{<0}$ such that $\tau \in \mathbb{Q}(\sqrt{D})$,

$$\text{End}(H^1(T_\tau^2; \mathbb{Q}))^{\text{Hdg}} \cong \mathbb{Q}(\sqrt{D}).$$

“ T_τ^2 is an elliptic curve with complex multiplication.”

“The Hodge structure on $H^1(T_\tau^2; \mathbb{Q})$ is of CM-type.”

(Otherwise, $\text{End}(H^1(T_\tau^2; \mathbb{Q}))^{\text{Hdg}} \cong \mathbb{Q}.$)

Supporting Evidence of the GV Conjecture

[Moore '98, Gukov Vafa '02]

- ▶ elliptic curves $M = T^2$

RCFT $\Leftrightarrow \exists D \in \mathbb{Z}_{<0}$ such that $\tau, \rho \in \mathbb{Q}(\sqrt{D})$ $M \cong T_\tau^2 = \mathbb{C}/(\mathbb{Z} \oplus \tau\mathbb{Z})$
 $\rho = \int_M \frac{B+i\omega}{(2\pi)^2 \alpha'}$
 $M \cong T_\tau^2$ and $W \cong T_\rho^2$ are of **CM-type** with $\mathbb{Q}(\sqrt{D})$.

- ▶ the Fermat quintic $M = \{z_1^5 + z_2^5 + z_3^5 + z_4^5 + z_5^5 = 0\} \subset \mathbb{P}^4$

⋯ target space of the **Gepner model** $(\text{Min}_{c=9/5}^{\mathcal{N}=2, \text{diag}})^{\otimes 5} / \mathbb{Z}_5$

$$\begin{array}{c} \underline{M} \\ \begin{bmatrix} 0 & 1 & & \\ & 0 & 0 & \\ & 0 & 1 & 0 & 0 \\ \hline 1 & 101 & 101 & 101 & 1 \end{bmatrix} \end{array} = \begin{array}{c} \underline{W} \\ \begin{bmatrix} 0 & 1 & & \\ & 0 & 0 & \\ & 0 & 101 & 0 & 0 \\ \hline 1 & 1 & 1 & 1 & 1 \end{bmatrix} \end{array}$$
$$\begin{array}{c} \\ \boxed{1 \ 1 \ 1 \ 1} \\ + \\ \boxed{2 \ 2} \end{array} \quad 0 \times 50$$

The **Hodge structures** are of **CM-type** with $\mathbb{Q}(\zeta_5)$.

GV Conjecture Revisited

Some need for refinement of the GV conjecture:

► Choice of complex structure

- $\mathcal{N} = (1, 1)$ SCFT $\rightsquigarrow (M; G, B)$
- the Hodge structure on $H^*(M; \mathbb{Q}) \rightsquigarrow (M; I)$

► Existence and choice of mirror

In general, for $\mathcal{N} = (2, 2)$ SCFT $(M; G, B; I)$,

- its mirror $(M_\circ; G_\circ, B_\circ; I_\circ)$ does not always exist.
- even if exists, not necessarily unique.

► Which Hodge structure should be of CM-type?

There can be multiple Hodge structures on $H^*(M; \mathbb{Q})$.

<u>T^4</u>				<u>CY 4-fold</u>						
		1				1				
	2	2			0	0	$h^{3,3}$	0		
1	4		1		0	$h^{3,2}$	$h^{2,3}$	0		
	2	2			1	$h^{3,1}$	$h^{2,2}$	$h^{1,3}$	0	1
		1			0	$h^{2,1}$	$h^{1,2}$		0	
					0	$h^{1,1}$	0			
						0	0			
							1			

► $(T^4; G, B)$ gives **RCFT**

⇒ • \exists complex structure I such that

- a mirror $(T_o^4; G_o, B_o; I_o)$ exists and for any mirror,
- the Hodge structures on $H^*(T^4; \mathbb{Q})$ and
the Hodge structures on $H^*(T_o^4; \mathbb{Q})$ are of **CM-type**

and Hodge isomorphic.

Results 2 [Kidambi Watari MO '22, Watari MO '22]

- The converse is not true:
even if we impose all the conditions on $(T^4; G, B)$,
there remain some non-RCFT cases.

e.g. $T^4 \simeq T_{\tau_1}^2 \times T_{\tau_2}^2$

	$T_{\tau_1}^2$	$T_{\tau_2}^2$
RCFT	$\tau_1, \rho_1 \in \mathbb{Q}(\sqrt{p_1})$	$\tau_2, \rho_2 \in \mathbb{Q}(\sqrt{p_2})$
non-RCFT	$\tau_1 \in \mathbb{Q}(\sqrt{p_1}), \rho_1 \in \mathbb{Q}(\sqrt{p_2})$	$\tau_2 \in \mathbb{Q}(\sqrt{p_2}), \rho_2 \in \mathbb{Q}(\sqrt{p_1})$

- An additional condition
 - There exists an isogeny $\phi : T_{\circ}^4 \rightarrow T^4$ such that $\phi^* : H^1(T^4; \mathbb{Z}) \rightarrow H^1(T_{\circ}^4; \mathbb{Z})$ satisfies

$$\phi^*|_{\Gamma_b^{\vee}} = \text{id}|_{\Gamma_b^{\vee}}$$

where $\Gamma_b \subset H_1(T^4; \mathbb{Z})$ denotes the “non-T-dualized directions”.
eliminates the non-RCFT cases, and
gives a necessary and sufficient condition for **RCFT** of $M = T^4$.